Skip to main content

Advertisement

Log in

Dissolved Organic Carbon Concentrations in Throughfall and Soil Waters at Level II Monitoring Plots in Norway: Short- and Long-Term Variations

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

We investigated concentrations of dissolved organic carbon (DOC) in throughfall and soil solutions at 5, 15 and 40-cm depth in 16 Norway spruce and two Scots pine plots throughout Norway between 1996 and 2006. Average DOC concentrations ranged from 2.3 to 23.1 mg/l and from 1.1 to 53.5 mg/l in throughfall water and soil solutions, respectively. Concentrations of DOC in throughfall and soil waters varied seasonally at most plots with peaks in the growing season. By contrast to recently reported positive long-term trends in DOC concentrations in surface waters between 1986 and 2003, soil water data from 1996 to 2006 showed largely negative trends in DOC concentrations and no significant trends in throughfall. However, regression analysis for individual sites, particularly at 5- and 15-cm soil depths, showed that DOC concentrations in soil water were significantly and negatively related to non-marine sulphate (SO4) and chloride (Cl). The lack of a long-term increase in DOC in soil water in the period May 1996–December 2006 may be due to the relatively small changes in the deposition of SO4 and Cl in this period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersson, S., & Nilsson, S. I. (2001). Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Biology & Biochemistry, 33(9), 1181–1191. doi:10.1016/S0038-0717(01)00022-0.

    Article  CAS  Google Scholar 

  • Andersson, S., Nilsson, S. I., & Sætre, P. (2000). Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biology & Biochemistry, 32(1), 1–10. doi:10.1016/S0038-0717(99)00103-0.

    Article  CAS  Google Scholar 

  • Broecker, W. S. (1974). Chemical oceanography. New York: Harcourt Brace Jovanovich.

    Google Scholar 

  • Christ, M. J., & David, M. B. (1996). Temperature and moisture effects on the production of dissolved organic carbon in a spodosol. Soil Biology & Biochemistry, 28(9), 1191–1199. doi:10.1016/0038-0717(96)00120-4.

    Article  CAS  Google Scholar 

  • Clarke, N., Røsberg, I., & Aamlid, D. (2005). Concentrations of dissolved organic carbon along an altitudinal gradient from Norway spruce forest to the mountain birch/alpine ecotone in Norway. Boreal Environment Research, 10(3), 181–189.

    CAS  Google Scholar 

  • Clarke, N., Wu, Y., & Strand, L. T. (2007). Dissolved organic carbon concentrations in four Norway spruce stands of different ages. Plant and Soil, 299, 275–285. doi:10.1007/s11104-007-9384-4.

    Article  CAS  Google Scholar 

  • Dalva, M., & Moore, T. R. (1991). Sources and sinks of dissolved organic carbon in a forested swamp catchment. Biogeochemistry, 15(1), 1–19. doi:10.1007/BF00002806.

    Article  CAS  Google Scholar 

  • de Wit, H. A., Mulder, J., Hindar, A., & Hole, L. (2007). Long-term increase in dissolved organic carbon in streamwaters in Norway is response to reduced acid deposition. Environmental Science & Technology, 41(22), 7706–7713. doi:10.1021/es070557f.

    Article  CAS  Google Scholar 

  • Easter, G. (1987). SAS/GRAPH ® Guide for personal computers. Cary: SAS Institute.

    Google Scholar 

  • Evans, C. D., Chapman, P., Clark, J., Monteith, D. T., & Cresser, M. (2006). Alternative explanations for rising dissolved organic carbon export from organic soils. Global Change Biology, 12(11), 2044–2053. doi:10.1111/j.1365-2486.2006.01241.x.

    Article  Google Scholar 

  • Falkengren-Grerup, U. (1994). Importance of soil solution chemistry to field performance of Galium odoratum and Stellaria nemorum. Journal of Applied Ecology, 31(1), 182–192. doi:10.2307/2404610.

    Article  CAS  Google Scholar 

  • FAO (1988). FAO-UNESCO Soil Map of the World, Revised Legend. Rome: FAO.

    Google Scholar 

  • Freeman, C., Fenner, N., Ostle, N. J., Kang, H., Dowrick, D. J., Reynolds, B., et al. (2004). Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature, 430(6996), 195–198. doi:10.1038/nature02707.

    Article  CAS  Google Scholar 

  • Fröberg, M., Berggren, D., Bergkvist, B., Bryant, C., & Mulder, J. (2006). Concentration and fluxes of dissolved organic carbon (DOC) in three Norway spruce stands along a climatic gradient in Sweden. Biogeochemistry, 77(1), 1–23. doi:10.1007/s10533-004-0564-5.

    Article  CAS  Google Scholar 

  • Fröberg, M., Berggren Kleja, D., Bergkvist, B., Tipping, E., & Mulder, J. (2005). Dissolved organic carbon leaching from a coniferous forest floor - a field manipulation experiment. Biogeochemistry, 75(2), 271–287. doi:10.1007/s10533-004-7585-y.

    Article  CAS  Google Scholar 

  • Gobran, G. R., & Nilsson, S. I. (1988). Effects of forest floor leachate on sulfate retention in a spodosl soil. Journal of Environmental Quality, 17(2), 235–239.

    CAS  Google Scholar 

  • Gödde, M., David, M. B., Christ, M. J., Kaupenjohann, M., & Vance, G. F. (1996). Carbon mobilization from the forest floor under red spruce in the northeastern U.S.A. Soil Biology & Biochemistry, 28(9), 1181–1189. doi:10.1016/0038-0717(96)00130-7.

    Article  Google Scholar 

  • Guggenberger, G., & Zech, W. (1992). Retention of dissolved organic-carbon and sulfate in aggregated acid forest soils. Journal of Environmental Quality, 21(4), 643–653.

    CAS  Google Scholar 

  • Guggenberger, G., Zech, W., & Schulten, H. (1994). Formation and mobilization pathways of dissolved organic matter: evidence from chemical structural studies of organic matter fractions in acid forest floor solutions. Organic Geochemistry, 21(1), 51–66. doi:10.1016/0146-6380(94)90087-6.

    Article  CAS  Google Scholar 

  • Hole, L.R., & Tørseth, K. (2002) Deposition of major inorganic compounds in Norway 1978–1982 and 1997–2001: status and trends. ISBN 82-425-1410-0. NILU.73 pp.

  • Joyner, S. P. (1985). SAS/STAT TM Guide for personal computers. Cary: SAS Institute.

    Google Scholar 

  • Kaiser, K., Guggenberger, G., Haumaier, L., & Zech, W. (2001). Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in northeastern Bavaria, Germany. Biogeochemistry, 55(2), 103–143. doi:10.1023/A:1010694032121.

    Article  CAS  Google Scholar 

  • Kendall, M. G. (1975). Rank correlation methods. London: Charles Griffin.

    Google Scholar 

  • Kopáček, J., Stuchlík, E., & Hardekopf, D. (2006). Chemical composition of the Tatra Mountain lakes: recovery from acidification. Biologia, 61, S21–S33. doi:10.2478/s11756-006-0117-6.

    Article  Google Scholar 

  • Kvaalen, H., Solberg, S., Clarke, N., Torp, T., & Aamlid, D. (2002). Time series study of concentrations of SO 2−4 and H+ in precipitation and soil waters in Norway. Environmental Pollution, 117(2), 215–224. doi:10.1016/S0269-7491(01)00271-8.

    Article  CAS  Google Scholar 

  • Libiseller, C. (2004). MULTMK/PARTMK a program for the computation of multivariate and partial Mann–Kendall tests.

  • Ma, J. F. (2000). Role of organic acids in detoxification of aluminum in higher plants. Plant & Cell Physiology, 41(4), 383–390.

    CAS  Google Scholar 

  • Michalzik, B., & Matzner, E. (1999). Dynamics of dissolved organic nitrogen and carbon in a central European Norway spruce ecosystem. European Journal of Soil Science, 50(4), 579–590. doi:10.1046/j.1365-2389.1999.00267.x.

    Article  Google Scholar 

  • Michalzik, B., Kalbitz, K., Park, J. H., Solinger, S., & Matzner, E. (2001). Fluxes and concentrations of dissolved organic carbon and nitrogen-a synthesis for temperate forests. Biogeochemistry, 52(2), 173–205. doi:10.1023/A:1006441620810.

    Article  Google Scholar 

  • Monteith, D. T., Stoddard, J. L., Evans, C. D., de Wit, H. A., Forsius, M., Høgasen, T., et al. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450(7169), 537–540. doi:10.1038/nature06316.

    Article  CAS  Google Scholar 

  • Montgomery, D. C., Peck, E. A., & Vining, G. G. (2001). Introduction to liner regression analysis. New York: Wiley.

    Google Scholar 

  • Neff, J. C., & Asner, G. P. (2001). Dissolved organic carbon in terrestrial ecosystems: Synthesis and a model. Ecosystems (New York, N.Y.), 4(1), 29–48. doi:10.1007/s100210000058.

    CAS  Google Scholar 

  • Ogner, G., Wickstrøm, T., Remedios, G., Gjelsvik, S., Hensel, G. R., Jacobsen, J. E., et al. (1999). The chemical analysis program of the Norwegian Forest Research Institute 2000. Ås, Norway: Norwegian Forest Research Institute.

    Google Scholar 

  • Prokushkin, A. S., Kajimoto, T., Prokushkin, S. G., McDowell, W. H., Abaimov, A. P., & Matsuura, Y. (2005). Climatic factors influencing fluxes of dissolved organic carbon from the forest floor in a continuous-permafrost Siberian watershed. Canadian Journal of Forest Research—Revue Canadienne de Recherche Forestière, 35(9), 2130–2140. doi:10.1139/x05-150.

    Article  CAS  Google Scholar 

  • Qualls, R. G., & Haines, B. L. (1991). Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem. Soil Science Society of America Journal, 55(4), 1112–1123.

    Article  Google Scholar 

  • Scott, M. J., Jones, M. N., Woof, C., & Tipping, E. (2001). The molecular properties of humic substances isolated from a UK upland peat system: a temporal investigation. Environment International, 27(6), 449–462. doi:10.1016/S0160-4120(01)00100-3.

    Article  CAS  Google Scholar 

  • Sharp, E. L., Parsons, S. A., & Jefferson, B. (2006). The impact of seasonal variations in DOC arising from a moorland peat catchment on coagulation with iron and aluminium salts. Environmental Pollution, 140(3), 436–443. doi:10.1016/j.envpol.2005.08.001.

    Article  CAS  Google Scholar 

  • Siemens, J. (2003). The European carbon budget: A gap. Science, 302, 1681. doi:10.1126/science.302.5651.1681a.

    Article  CAS  Google Scholar 

  • Skjelkvåle, B. L., Stoddard, J. L., Jeffries, D. S., Torseth, K., Hogasen, T., Bowman, J., et al. (2005). Regional scale evidence for improvements in surface water chemistry 1990–2001. Environmental Pollution, 137(1), 165–176. doi:10.1016/j.envpol.2004.12.023.

    Article  CAS  Google Scholar 

  • Strobel, B. W., Hansen, H., Borggaard, O. K., Andersen, M. K., & Raulund-Rasmussen, K. (2001). Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type. Biogeochemistry, 56(1), 1–26. doi:10.1023/A:1011934929379.

    Article  CAS  Google Scholar 

  • Tørseth, K. (1996). Overvåking av langtransportert forurenset luft og nedbør atmosfærisk tilførsel, 1995 (in Norwegian with an English summary). ISBN 82-425-0789-9.

  • Tørseth, K., & Semb, A. (1998). Deposition of nitrogen and other major inorganic compounds in Norway, 1992–996. Environmental Pollution, 102, 299–304. doi:10.1016/S0269-7491(98)80047-X.

    Article  Google Scholar 

  • UN/ECE. (2006). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Hamburg: Federal Research Centre for Forestry and Forest Products.

    Google Scholar 

  • Vogt, R. D., Ranneklev, S. B., & Mykkelbost, T. C. (1994). The impact of acid treatment on soilwater chemistry at the HUMEX site. Environment International, 20(3), 277–286. doi:10.1016/0160-4120(94)90111-2.

    Article  CAS  Google Scholar 

  • Vuorenmaa, J., Forsius, M., & Mannio, J. (2006). Increasing trends of total organic carbon concentrations in small forest lakes in Finland from 1987 to 2003. The Science of the Total Environment, 365(1–3), 47–65. doi:10.1016/j.scitotenv.2006.02.038.

    CAS  Google Scholar 

  • Worrall, F., Burt, T., & Adamson, J. (2004). Can climate change explain increases in DOC flux from upland peat catchments? The Science of the Total Environment, 326(1–3), 95–112. doi:10.1016/j.scitotenv.2003.11.022.

    CAS  Google Scholar 

  • Yano, Y., Lajtha, K., Sollins, P., & Caldwell, B. A. (2004). Chemical and seasonal controls on the dynamics of dissolved organic matter in a coniferous old-growth stand in the Pacific Northwest, USA. Biogeochemistry, 71(2), 197–223. doi:10.1007/s10533-004-8130-8.

    Article  CAS  Google Scholar 

  • Zsolnay, A. (2003). Dissolved organic matter: artefacts, definitions, and functions. Geoderma, 113(3–4), 187–209. doi:10.1016/S0016-7061(02)00361-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by the Norwegian Ministries of Agriculture and the Environment. We would like to thank our technical staff for setting up and maintaining the plots, the local observers of the Norwegian Monitoring Programme for Forest Damage for collecting the samples, the Analytical Laboratory of the Norwegian Forest Research Institute for chemical analysis and the Norwegian Meteorological Institute for providing data for MAT and MAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijie Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Clarke, N. & Mulder, J. Dissolved Organic Carbon Concentrations in Throughfall and Soil Waters at Level II Monitoring Plots in Norway: Short- and Long-Term Variations. Water Air Soil Pollut 205, 273–288 (2010). https://doi.org/10.1007/s11270-009-0073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0073-1

Keywords

Navigation