Skip to main content
Log in

Dissolution Factors of Ta, Th, and U Oxides Present in Pyrochlore

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Air pollution can be a problem in industrial processes, but monitoring and controling the aerosols in the work place is not enough to estimate the occupational risk due to dust particle inhalation. The solubility in lung fluid is considered to estimate this risk. The aim of this study is to determine in vitro specific dissolution parameters for thorium (Th), uranium (U), and tantalum (Ta) associated to crystal lattice of a niobium mineral (pyrochlore). Th, U, and Ta dissolution factors in vitro were obtained using the Gamble solution (simulant lung fluid, SLF), particle induced X-ray emission, and alpha spectrometry as analytical techniques. Ta, Th, and U are present in the pyrochlore crystal lattice as oxide; however, they have shown different dissolution parameters. The rapid dissolution fraction (f r), rapid dissolution rate (λ r), slow dissolution rate (f s), and slow dissolution fraction (λ s) measured for tantalum oxide were equal to 0.1 and 0.45 and 0.00007 day−1, respectively. For uranium oxide, f r was equal to 0.05, λ r was equal to 1.1 day−1, and λ s was equal to 0.000068 day−1. For thorium oxide, f r was 0.025, λ r was 1.5 day−1, and λ s was 0.000065 day−1. These results show that chemical behavior of these three compounds in the SLF could not be represented by the same parameter. The ratio of uranium concentration in urine and feces samples from workers exposed to pyrochlore dust particle was determined. These values agree with the theoretical values of estimated uranium concentration using specific parameters for uranium oxide present in pyrochlore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andrea Blanco, M. D., Floyd, R., & Gibb, M. S. (1974). Studies of tantalum dust in the lungs. Radiology, 112, 549–556.

    Google Scholar 

  • Ansoborlo, E., Guilmette, R. A., Hoover, M. D., Chazel, V., Houpert, P., & Hengé-Napoli, N. H. (1998). Application of in vitro dissolution test to different uranium compounds and comparison with in vivo data. Radiation Protection Dosimetry, 79(1–4), 33–37.

    CAS  Google Scholar 

  • Ansoborlo, E., Chazel, V., Hengé-Napoli, M. H., Pihet, P., Rannou, A., Bailey, M. R., et al. (2002). Determination of the physical and chemical properties, buiokinetics, and dose coeficients of uranium compounds handled during nuclear fuel fabrication in France. International Health Physics, 82, 279–289. doi:10.1097/00004032-200203000-00001.

    Article  CAS  Google Scholar 

  • Beckova, V., & Malatova, I. (2007). Dissolution behaviour of 238U, 234U and 230Th deposited on filters from personal dosemeters. Radiation Protection Dosimetry, 129(4), 469–472.

    Article  CAS  Google Scholar 

  • Bertelli, L., Melo, D. R., Lipsztein, J., & Cruz-Suarez, R. (2008). AIDE: Internal Dosimetry Software. Radiation Protection Dosimetry, 130(3), 358–367. doi:10.1093/rpd/ncn059.

    Article  CAS  Google Scholar 

  • Chazel, V., Houpert, P., Paquet, F., & Ansoborlo, E. (2001). Effect of absorption parameters on calculation of the dose coefficient: example of classification industrial uranium compounds. Radiation Protection Dosimetry, 94, 261–268.

    CAS  Google Scholar 

  • Chen, X. A., Cheng, Y. E., & Rong, Z. (2005). Recent results from a study of thorium lung burdens and health effects among miners in China. Journal of Radiological Protection, 25, 451–460. doi:10.1088/0952-4746/25/4/007.

    Article  CAS  Google Scholar 

  • Cusbert, P. J., Carter, P. J., & Woods, D. A. (1994). In vitro dissolution of uranium. Radiation Protection Dosimetry, 55, 39–47.

    CAS  Google Scholar 

  • Dália, K. C. P. (2006). Estudo Da Exposição Ocupacional a Tântalo e Radionuclídeos Naturais. D.Sc. These Federal University of Rio de Janeiro, Instituto de Biofísica, Rio de Janeiro, Brazil.

  • Dias da Cunha, K. M. A., Lipsztein, J. L., Fang, C. P., & Barros Leite, C. V. (1998a). A cascade impactor for mineral particle analysis. Journal of Aerosol Science and Technology, 29, 126–132. doi:10.1080/02786829808965557.

    Article  Google Scholar 

  • Dias da Cunha, K. M. A., Lipsztein, J. L., & Barros Leite, C. V. (1998b). Occupational exposure to thorium in two Brazilian niobium plants. Radiation Protection Dosimetry, 79(1–4), 63–66.

    Google Scholar 

  • Dias da Cunha, K., Lipsztein, J. L., Azeredo, A. M., Melo, D., Julião, L. M. Q. C., Lamego, F. F., et al. (2002). Study of workers exposure to thorium, uranium and niobium mineral dust. Water Air and Soil Pollution, 137, 45–61. doi:10.1023/A:1015599406550.

    Article  CAS  Google Scholar 

  • Edmunds, L. H., Jr., Graf, P. D., Sagel, S. S., & Greenspan, R. H. (1970). Radiographic observation of clearance of tantalum and barium sulfate particles from airways. Investigative Radiology, 5, 131–141. doi:10.1097/00004424-197005000-00001.

    Article  Google Scholar 

  • Eidson, A. F. (1994). The effect of solubility on inhaled uranium compound clearance: A review. Health Physics, 67(1), 1–4.

    Article  CAS  Google Scholar 

  • Eidson, A. F., & Mewhinney, J. A. (1981). In vitro dissolution of respirable aerosols of industrial uranium and plutonium mixed-oxide nuclear fuels. NUREG, CR-2171, LMF-79.

  • Friedman, P. J., & Tisi, G. M. (1972). Alveolarization of tantalum powder in experimental bronchography and the clearance of inhaled particles from the lung. Radiology, 104, 523–535.

    CAS  Google Scholar 

  • Frondel, J., Fleischer, M., & Jones, R. (1967). Glossary of uranium and thorium bearing minerals (4th ed.). Washington, DC: United States Government Printing Office.

    Google Scholar 

  • Gamble, J. L. (1967). Chemical anatomy, physiology and pathology of extracellular fluid (8th ed.), pp. 4–11. Boston, MA: Harvard University Press.

    Google Scholar 

  • Gamsu, G., Weintraub, R. M., & Nadel, J. A. (1973). Clearance of tatalum from airways of different caliber in man evaluated by a röentgenographic method. The American Review of Respiratory Disease, 107, 214–224.

    CAS  Google Scholar 

  • Hinds, W. (1998). Aerosol Technology: properties, behavior and measurement of airborne particles (2nd ed.). New York, NY: Willey.

    Google Scholar 

  • ICRP (International Commission on Radiological Protection). (1959). ICRP publication number 2. Report of committee II on permissible dose for internal radiation. Oxford: Pergamon.

    Google Scholar 

  • ICRP (International Commission on Radiological Protection). (1994). ICRP publication number 66. Human respiratory tract model for radiological protection. Oxford: Pergamon.

    Google Scholar 

  • ICRP (International Commission on Radiological Protection). (1997). ICRP Publication number 78. Individual monitoring for internal exposure of workers. ICRP publication nr. 78. Ann ICRP 27(3–4). Oxford: Pergamon.

    Google Scholar 

  • ICRP (International Commission on Radiological Protection). (2002). ICRP publication number 32. Guide for practical application of the ICRP human respiratory tract model, supporting guide 3. Oxford: Pergamon.

    Google Scholar 

  • Johansson, S. A. E., & Campbell, J. L. (1995). Particle induced X ray emission spectrometry. Chichester: Wiley.

    Google Scholar 

  • Kanapilly, G. M., & Goh, C. H. T. (1973). Some factors affecting the in vitro rates of dissolution of respirable particles of relatively low solubility. Health Physics, 25, 225–237. doi:10.1097/00004032-197309000-00002.

    Article  CAS  Google Scholar 

  • Kanapilly, G. M., Raabe, O. G., & Goh, C. H. T. (1973). Measurement of in vitro dissolution of aerosol particles for comparison to in vivo dissolution in the lower respiratory tract after inhalation. Health Physics, 24, 497–507. doi:10.1097/00004032-197305000-00004.

    Article  CAS  Google Scholar 

  • Lauria, D. C., & Godoy, J. M. (1988). A sequential analytical method for the determination of U-238, Th-232, Th-230, Th-228, Ra-228 and Ra-226 in environmental samples. Science of the Total Environment, 70, 83–99. doi:10.1016/0048-9697(88)90253-7.

    Article  CAS  Google Scholar 

  • Leggett, R. W., Eckerman, K. F., & Boice, J. D., Jr. (2005). A respiratory model for uranium aluminide based on occupational data. Radiology Protection Journal, 25, 405. doi:10.1088/0952-4746/25/4/004.

    Article  CAS  Google Scholar 

  • Li, W. B., Wahl, W., Oeh, U., Hollriegl, V., & Roth, P. (2007). Biokinetic modelling of natural thorium in humans by ingestion. Radiation Protection Dosimetry, 125, 500–505.

    Article  CAS  Google Scholar 

  • Llamas, R., Ortiz, J., Perz, A. R., & Baum, G. L. (1969). Experimental bronchography by tantalum insufflations. Diseases of the Chest, 56, 75–77.

    CAS  Google Scholar 

  • Moss, O. R. (1979). Simulants of lung intersticial fluid. Health Physics, 36, 447–448.

    CAS  Google Scholar 

  • Nadel, J. A., Wolfe, W. G., & Graf, P. D. (1968). Powdered tantalum as a medium for bronchography in canine and human lungs. Investigative Radiology, 3, 229–238. doi:10.1097/00004424-196807000-00001.

    Article  CAS  Google Scholar 

  • Oliveira, R. (2006). Proposta de um Novo Modelo Biocinético para o Nióbio—Rio de Janeiro Federal University-COOPE. D.Sc. these, Rio de Janeiro, RJ.

  • Sill, C. W., Voelz, G. L., Olson, D. G., & Anderson, J. I. (1969). Two studies of acute internal exposure to man involving cerium and tantalum radioisotopes. Health Physics, 16, 325–332.

    Article  CAS  Google Scholar 

  • Stradling, N., Hodgson, A., Ansoborlo, E., Bérard, P., Etherington, G., Fell, T., et al. (2003). Anomalies between radiological and chemical limits for uranium after inhalation by workers and the public. Radiation Protection Dosimetry, 105(1–4), 175–178.

    CAS  Google Scholar 

  • Sutton, M., & Burastero, S. R. (2004). Uranium (VI) solubility and speciation in simulated elemental human biological fluids. Chemical Research in Toxicology, 17, 1468–1480. doi:10.1021/tx049878k.

    Article  CAS  Google Scholar 

  • Wan, B., Fleming, J. T., Schultz, T. W., & Sayler, G. S. (2006). In vitro immune toxicity of depleted uranium: effects on murine macrophages, CD4+ T-cells and gene expression. Environmental Health Perspectives, 114(1), 85–91.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mineração Catalão de Goiás, FAPERJ, CNPq, and PRONEX for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dias da Cunha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias da Cunha, K., Santos, M., Zouain, F. et al. Dissolution Factors of Ta, Th, and U Oxides Present in Pyrochlore. Water Air Soil Pollut 205, 251–257 (2010). https://doi.org/10.1007/s11270-009-0071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0071-3

Keywords

Navigation