Skip to main content

Advertisement

Log in

Evaluation of Acid Leachable Trace Metals in Soils Around a Five Centuries Old Mining District in Hidalgo, Central Mexico

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

We present the concentrations and distribution patterns of nine acid leachable trace metals (ALTMs) Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn, and Cd in the soil samples from the five century old Pachuca-Mineral de Monte mining district of the Central Mexico. The ALTMs do not show any significant correlation with pH, EC, CaCO3, and organic carbon. The metal concentration indicates three distinct distribution patterns. Fe, Mn, Cr, Pb, and Zn show enrichment in the high altitude region of the northern and central part of the study area. Likewise, Cu and Cd are enriched in the northern mountainous terrains. Both these groups show strong positive correlation with Mn indicating that they are associated with Mn-bearing minerals. However, we relate the first group of metals to excessive vehicular transportation and second group to mining waste dumps. The third group of ALTMs Co and Ni indicates its direct relationship to ore processing activities. Comparison of ALTMs concentrations from this study and various other studies throughout the world suggests the need to take precautionary measures of surface soil in high altitude areas to avoid metal enrichments and its subsequent environmental problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environment: biogeochemistry, bioavailability, and risks of metals. 2 nd Edn., Springer, p. 867. Heidelberg: Berlin.

    Google Scholar 

  • Agemian, H., & Chau, A. S. Y. (1976). Evaluation of extraction technique for the determination of metals in aquatic sediments. Analyst (London), 101, 761–767. doi:10.1039/an9760100761.

    Article  CAS  Google Scholar 

  • Aitchison, J. (1986). The statistical analysis of compositional data. New York: Wiley.

    Google Scholar 

  • Bakirdere, S., & Yaman, M. (2008). Determination of lead, cadmium and copper in roadside soil and plants in Elazig, Turkey. Environmental Monitoring and Assessment, 136, 401–410. doi:10.1007/s10661-007-9695-1.

    Article  CAS  Google Scholar 

  • Balakrishnan, N., & Muller-Dombois, D. (1983). Nutrient studies in relation to habitat types and canopy die black in the Montane rain forest ecosystem, Island of Hawaii. Pacific Science, 37, 339–359.

    Google Scholar 

  • Bell, F. G., Bullock, S. E. T., Hälbich, T. F. J., & Lindsay, P. (2001). Environmental impacts associated with an abandoned mine in the witbank Coalfield, South Africa. International Journal of Coal Geology, 45, 195–216. doi:10.1016/S0166-5162(00)00033-1.

    Article  CAS  Google Scholar 

  • Boularbah, A., Schwartz, C., Bitton, G., & Mörel, J. L. (2006). Heavy metal contamination from mining sites in south Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere, 63, 802–810. doi:10.1016/j.chemosphere.2005.07.079.

    Article  CAS  Google Scholar 

  • Chork, C. Y., & Govett, G. J. S. (1985). Comparison of interpretations of geochemical soil data by some multivariate statistical methods, Key Anacon, N.B., Canada. Journal of Geochemical Exploration, 23, 213–242. doi:10.1016/0375-6742(85)90027-5.

    Article  CAS  Google Scholar 

  • Dreier, J. E. (2005). The environment of vein formation and ore deposition in the Purisima-Colon vein system, Pachuca real del Monte District, Hidalgo, Mexico. Economic Geology and the Bulletin of the Society of Economic Geologists, 100(7), 1325–1347. doi:10.2113/100.7.1325.

    CAS  Google Scholar 

  • Dueñas-Garcia, J. C., Frías-González, M. A., Benitez-López, J., Macedo-Palencia, R., & Rodríguez-Salinas, J. J. (1992). Geological-Mining Monograph of the State of Hidalgo. Consejo de Recurso Minerales, Publishing No. M-3E, Pachuca, pp. 19–28.

  • El-Khalil, H., El-Hamiani, O., Bitton, G., Ouazzani, N., & Boularbah, A. (2008). Heavy metal contamination from mining sites in Routh Morocco: monitoring metal content and toxicity of soil runoff and groundwater. Environmental Monitoring and Assessment, 136, 147–160. doi:10.1007/s10661-007-9671-9.

    Article  Google Scholar 

  • Fakayode, S. O., & Olu-Owolabi, B. I. (2003). Heavy metal contamination of road side top soil in Osogbo, Nigeria: its relationship to traffic density and proximity to highways. Environmental Geology, 44, 150–157.

    CAS  Google Scholar 

  • Ferguson, J. E. (1990). The heavy elements: chemistry, environmental impacts and health effects. Oxford: Pergamon Press.

    Google Scholar 

  • Fuller, C. C., Davis, J. A., & Waychunas, G. A. (1993). Surface chemistry of ferrihydrate: Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochimica et Cosmochimica Acta, 57, 2271–2282. doi:10.1016/0016-7037(93)90568-H.

    Article  CAS  Google Scholar 

  • Gaudette, H. E., Flight, W. R., Toner, L., & Folger, D. W. (1974). An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Petrology, 44, 249–253.

    CAS  Google Scholar 

  • Govil, P. K., Reddy, G. L. N., & Krishna, A. K. (2001). Soil contamination due to heavy metals in Patacheru industrial development area. Environmental Geology, 41, 461–469. doi:10.1007/s002540100415.

    Article  CAS  Google Scholar 

  • Janaki-Raman, D., Jonathan, M. P., Srinivasalu, S., Armstrong-Altrin, J. S., Mohan, S. P., & Ram-Mohan, V. (2007). Trace metals in core sediments from Muthupet Mangroves, SE Coast of India. Environmental Pollution, 145, 245–257. doi:10.1016/j.envpol.2006.03.012.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants. Boca Raton: CRC.

    Google Scholar 

  • Kalbitz, K., & Wennrich, R. (1998). Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Science of the Total Environment, 209, 27–39. doi:10.1016/S0048-9697(97) 00302-1.

    Article  CAS  Google Scholar 

  • Kelm, U., Helle, S., Matthies, R., & Morales, A. (2008). Distribution of trace elements in soils surrounding the El Teniente porphyry copper deposit, Chile: the influence of smelter emissions and a tailings deposit. Environmental Geology, . doi:10.1007/s00254-008-1305-1.

    Google Scholar 

  • Kraemer, S. M., & Hering, J. G. (2004). Biogeochemical controls on the mobility and bioavailability of metals in soils and ground water. Aquatic Sciences, 66, 1–2. doi:10.1007/s00027-004-0004-6.

    Article  Google Scholar 

  • Krishna, A. K., & Govil, P. K. (2005). Heavy metal distribution and contamination in soils of Thane-Belapur industrial development area, Mumbai, western India. Environmental Geology, 47, 1054–1061. doi:10.1007/s00254-005-1238-x.

    Article  CAS  Google Scholar 

  • Krishna, A. K., & Govil, P. K. (2008). Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, southern India. Environmental Geology, 54, 1465–1472. doi:10.1007/s00254-007-0927-z.

    Article  CAS  Google Scholar 

  • Lee, J. Y., Choi, J. C., & Lee, K. K. (2005). Variation in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea. Environmental Geochemistry and Health, 27, 237–257. doi:10.1007/s10653-004-3480-7.

    Article  CAS  Google Scholar 

  • Li, X., Chi-sun, P., & Liu, P. S. (2001). Heavy metal contamination of urban soils and street dusts in Hongkong. Applied Geochemistry, 16, 1361–1368. doi:10.1016/S0883-2927(01)00045-2.

    Article  CAS  Google Scholar 

  • Li, X., Siu-lan, L., Sze-chung, W., & Thornton, I. (2004). The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environmental Pollution, 129, 113–124. doi:10.1016/j.envpol.2003.09.030.

    Article  CAS  Google Scholar 

  • Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Science Reviews, 32, 235–283. doi:10.1016/0012-8252(92)90001-A.

    Article  CAS  Google Scholar 

  • Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Science of the Total Environment, 300, 229–243. doi:10.1016/S0048-9697(02)00273-5.

    Article  CAS  Google Scholar 

  • McKenzie, E. R., Wong, C. M., Green, P. G., Kayhanian, M., & Young, T. M. (2008). Size dependent elemental composition of road-associated particles. Science of the Total Environment, 398, 145–153. doi:10.1016/j.scitotenv.2008.02.052.

    Article  CAS  Google Scholar 

  • Mian, M. H., & Yanful, E. K. (2003). Tailings erosion and resuspension in two mine tailings ponds due to wind waves. Advances in Environmental Research, 7, 745–765. doi:10.1016/S1093-0191(02)00027-8.

    Article  CAS  Google Scholar 

  • Norra, S., Fjer, N., Li, F., Chu, X., Xie, X., & Stüben, D. (2008). The influence of different land uses on mineralogical and chemical composition and horizonation of urban soil profiles in Qindao, China. Journal of Soils and Sediments, 8(1), 4–16. doi:10.1065/jss2007.08.250.

    Article  CAS  Google Scholar 

  • Özkan, M. H., Gürkan, R., Özkan, A., & Akçay, M. (2005). Determination of manganese and lead in road side soil samples by FAAS with ultrasound assisted leaching. Journal of Analytical Chemistry, 60(5), 469–474. doi:10.1007/s10809-005-0121-y.

    Article  Google Scholar 

  • Pagotto, C., Remy, N., Legret, M., & LeCloirec, P. (2001). Heavy metal pollution of road dust and road side soil near a major rural highway. Environmental Technology, 22, 307–319. doi:10.1080/09593332208618280.

    Article  CAS  Google Scholar 

  • Passariello, B., Giuliano, V., Quaresima, S., Barbaro, M., Caroli, S., Forte, G., et al. (2002). Evaluation of environmental contamination at an abandoned mining site. Microchemical Journal, 73, 245–250. doi:10.1016/S0026-265X(02)00069-3.

    Article  CAS  Google Scholar 

  • Proctor, J., & Baker, A. J. M. (1994). The importance of nickel for plant growth in ultramafic (serpentine) soils. In S. M. Ross (Ed.), Toxic metals in soil–plant system, pp. 417–432. New York: Wiley.

    Google Scholar 

  • Ranasinghe, P. N., Dissanayake, C. B., Samarasinghe, D. V. N., & Galappatti, R. (2007). The relationship between soil geochemistry and die back of Montane forests in Sri Lanka: a case study. Environmental Geology, 51, 1077–1088. doi:10.1007/s00254-006-0399-6.

    Article  CAS  Google Scholar 

  • Razo, I., Carrizales, L., Castro, J., Diaz-Barriga, F., & Monroy, M. (2004). Arsenic and heavy metal pollution of soil water and sediments in a semi-arid climate mining area in Mexico. Water, Air, and Soil Pollution, 152, 129–152. doi:10.1023/B:WATE.0000015350.14520.c1.

    Article  CAS  Google Scholar 

  • Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3. Chemical methods. SSSA Book series: No. 5, pp. 417–435. Madison, WI: SSSA and ASA.

    Google Scholar 

  • Salomons, W. (1995). Environmental impact of metals derived from mining activities: Processes, predictions, prevention. Journal of Geochemical Exploration, 52, 5–23. doi:10.1016/0375-6742(94)00039-E.

    Article  CAS  Google Scholar 

  • Sharma, V. K., Rhudy, K. B., Cargill, J. C., Tacker, M. E., & Vazquez, F. G. (2000). Metals and grain size distributions in soil of the middle Rio Grande basin, Texas, USA. Environmental Geology, 39(6), 698–704. doi:10.1007/s002540050484.

    Article  CAS  Google Scholar 

  • Sutherland, R. A. (2003). Lead in grain size fractions of road-deposited sediment. Environmental Pollution, 121, 229–237. doi:10.1016/S0269-7491(02)00219-1.

    Article  CAS  Google Scholar 

  • Sutherland, R. A., & Tolosa, C. A. (2000). Multi-element analysis of road-deposited sediment in an urban drainage basin, Honolulu, Hawaii. Environmental Pollution, 110, 483–495. doi:10.1016/S0269-7491(99)00311-5.

    Article  CAS  Google Scholar 

  • Taliadouri, F. V. (1995). A weak acid extraction method as a tool for the metal pollution assessment in surface sediments. Mikrochimica Acta, 119, 243–249. doi:10.1007/BF01244003.

    Article  Google Scholar 

  • Thuy, H. T. T., Tobschall, H. J., & An, P. V. (2000). Distribution of heavy metals in urban soils—a case study of Danang-Hoian area (Vietnam). Environmental Geology, 39(6), 603–610. doi:10.1007/s002540050472.

    Article  CAS  Google Scholar 

  • Turer, D. (2005). Effect of non-vehicular sources on heavy metal concentrations of roadside soils. Water, Air, and Soil Pollution, 166, 251–264. doi:10.1007/s11270-005-7378-5.

    Article  CAS  Google Scholar 

  • Turer, D., Maynard, J. B., & Sansalone, J. J. (2001). Heavy metal contamination in soils of urban highways: comparison between runoff and soil concentrations at Cincinnati, Ohio. Water, Air, and Soil Pollution, 132, 293–314. doi:10.1023/A:1013290130089.

    Article  CAS  Google Scholar 

  • Wang, X. T. (1991). Effect of soil acidity on distribution and chemical forms of heavy metals in soil. Acta Pedologica Sinica, 28, 103–107.

    Google Scholar 

  • Wang, X. S., Qin, Y., & Sang, S.-X. (2005). Accumulation and source of heavy metals in urban top soils: a case study from the city of Xuzhou China. Environmental Geology, 48, 101–107. doi:10.1007/s00254-005-1270-x.

    Article  CAS  Google Scholar 

  • Yun, S.-T., Choi, B.-Y., & Lee, P.-K. (2000). Distribution of heavy metals (Cr, Cu, Zn, Pb, Cd, As) in road side sediments, Seoul Metropolitan city, Korea. Environmental Technology, 21, 989–1000. doi:10.1080/09593332108618045.

    Article  CAS  Google Scholar 

  • Zelazny, L. W., & White, G. N. (1989). The phyrophillite-talc group. In J. B. Dixon & S. B. Weed (Eds.), Minerals in soil environment, pp. 527–550. Madison: Soil Science Society of America.

    Google Scholar 

  • Zhang, C. S., & Selinus, O. (1998). Statistics and GIS in environmental geochemistry—some problems and solutions. Journal of Geochemical Exploration, 64(1–3), 339–354. doi:10.1016/S0375-6742(98)00048-X.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MPJ and PDR wishes to thank SNI-CONACyT, Mexico for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Jonathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonathan, M.P., Jayaprakash, M., Srinivasalu, S. et al. Evaluation of Acid Leachable Trace Metals in Soils Around a Five Centuries Old Mining District in Hidalgo, Central Mexico. Water Air Soil Pollut 205, 227–236 (2010). https://doi.org/10.1007/s11270-009-0068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0068-y

Keywords

Profiles

  1. M. P. Jonathan