Advanced Oxidation Processes for Wastewater Treatment: State of the Art

  • J. M. PoyatosEmail author
  • M. M. Muñio
  • M. C. Almecija
  • J. C. Torres
  • E. Hontoria
  • F. Osorio


The protection and conservation of natural resources is one of the main priorities of modern society. Water is perhaps our most valuable resource, and thus should be recycled. Many of the current recycling techniques for polluted water only concentrate the pollutant without degrading it or eliminating it. In this sense, advanced oxidation processes are possibly one of the most effective methods for the treatment of wastewater containing organic products (effluents from chemical and agrochemical industries, the textile industry, paints, dyes, etc.). More conventional techniques cannot be used to treat such compounds because of their high chemical stability and/or low biodegradability. This article describes, classifies, and analyzes different types of advanced oxidation processes and their application to the treatment of polluted wastewater.


Advanced oxidation processes Recycling Polluted water Dye 


  1. Alaton, I. A., Balcioglu, I. A., & Bahnemann, D. W. (2002). Advanced oxidation of a reactive dyebath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Research, 36, 1143–1154. doi: 10.1016/S0043-1354(01)00335-9.CrossRefGoogle Scholar
  2. Alsheyab, M. A., & Muñoz, A. H. (2006). Reducing the formation of trihalomethanes (THMs) by ozone combined with hydrogen peroxide (H2O2/O3). Desalination, 194, 121–126. doi: 10.1016/j.desal.2005.10.028.CrossRefGoogle Scholar
  3. Amadelli, R., Battisti, A. D., Girenko, D. V., Kovalyov, S. V., & Velichenko, A. B. (2000). Electrochemical oxidation of trans-3, 4-dihydroxycinnamic acid at PbO2 electrodes: direct electrolysis and ozone mediated reactions compared. Electrochimica Acta, 46, 341–347. doi: 10.1016/S0013-4686(00)00590-9.CrossRefGoogle Scholar
  4. Amat, A. M., Miranda, M. A., Vincente, R., & Segui, S. (2007). Degradation of two commercial anionic surfactants by means of ozone and/or UV irradiation. Environmental Engineering Science, 24(6), 790–794. doi: 10.1089/ees.2006.0030.CrossRefGoogle Scholar
  5. Cañizares, P., Louhichi, B., Gadri, A., Nasr, B., Paz, R., Rodrigo, M. A., et al. (2007). Electrochemical treatment of the pollutants generated in an ink-manufacturing process. Journal of Hazardous Materials, 146(3), 552–557. doi: 10.1016/j.jhazmat.2007.04.085.CrossRefGoogle Scholar
  6. Cañizares, P., Paz, R., Saez, C., & Rodrigo, M. A. (2009). Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes. Journal of Environmental Management, 90, 410–420. doi: 10.1016/j.jenvman.2007.10.010.CrossRefGoogle Scholar
  7. Carbajo, M., Beltrán, F. J., Gimeno, O., Acebo, B., & Rivas, F. J. (2007). Ozonation of phenolic wastewater in the presence of a perovskite type catalyst. Applied Catalysis B Environmental, 74, 203–210. doi: 10.1016/j.apcatb.2007.02.007.CrossRefGoogle Scholar
  8. Černigoj, U., Štangar, U. L., & Trebše, P. (2007). Degradation of neonicotinoid insecticides by different advanced oxidation processes and studying the effect of ozone on TiO2 photocatalysis. Applied Catalysis B Environmental, 75, 229–238. doi: 10.1016/j.apcatb.2007.04.014.CrossRefGoogle Scholar
  9. Chen, W., Juan, C., & Wei, K. (2007). Decomposition of dinitrotoluene isomers and 2, 4, 6-trinitrotoluene in spent acid from toluene nitration process by ozonation and photo-ozonation. Journal of Hazardous Materials, 147, 97–104. doi: 10.1016/j.jhazmat.2006.12.052.CrossRefGoogle Scholar
  10. Chen, W., & Liang, J. (2009). Electrochemical destruction of dinitrotoluene isomers and 2, 4, 6-trinitrotoluene in spent acid from toluene nitration process. Journal of Hazardous Materials, 161, 1017–1023. doi: 10.1016/j.jhazmat.2008.04.048.CrossRefGoogle Scholar
  11. Chen, W., Shi, H., & Lu, J. (2007). Electrochemical treatment of ammonia in wastewater by RuO2–IrO2–TiO2/Ti electrodes. Journal of Applied Electrochemistry, 37, 1137–1144. doi: 10.1007/s10800-007-9373-6.CrossRefGoogle Scholar
  12. Chitra, S., Paramasivan, K., Sinha, P. K., & Lal, K. B. (2004). Ultrasonic treatment of liquid waste containing EDTA. Journal of Cleaner Production, 12, 429–435. doi: 10.1016/S0959-6526(03)00034-9.CrossRefGoogle Scholar
  13. Fan, L., Zhou, Y., Yang, W., Chen, G., & Yang, F. (2008). Electrochemical degradation of aqueous solution of amaranth azo dye on ACF under potentiostatic model. Dyes and Pigments, 76, 440–446. doi: 10.1016/j.dyepig.2006.09.013.CrossRefGoogle Scholar
  14. Felis, E., Marciocha, D., Surmacz-Gorska, J., & Miksch, K. (2007). Photochemical degradation of naproxen in the aquatic environment. Water Science and Technology, 55(12), 281–286. doi: 10.2166/wst.2007.417.CrossRefGoogle Scholar
  15. Fockedey, E., & Van Lierde, A. (2002). Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes. Water Research, 36, 4169–4175. doi: 10.1016/S0043-1354(02)00103-3.CrossRefGoogle Scholar
  16. Fung, P. C., Poon, C. S., Chu, C. W., & Tsui, S. M. (2001). Degradation kinetics of reactive dye by UV/H2O2/US process under continuous mode operation. Water Science and Technology, 44(6), 67–72.Google Scholar
  17. Gao, J., Yu, J., Lu, Q., He, X., Yang, W., Li, Y., et al. (2008). Decoloration of alizarin red S in aqueous solution by glow discharge electrolysis. Dyes and Pigments, 76, 47–52. doi: 10.1016/j.dyepig.2006.08.033.CrossRefGoogle Scholar
  18. García, J. C., Oliveira, J. L., Silva, A. E. C., Oliveira, C. C., Nozaki, J., & de Souza, N. E. (2007). Comparative study of the degradation of real textile effluents by photocatalysis reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems. Journal of Hazardous Materials, 147, 105–110. doi: 10.1016/j.jhazmat.2006.12.053.CrossRefGoogle Scholar
  19. Giri, R. R., Ozaki, H., Ishida, T., Takanami, R., & Taniguchi, S. (2007). Synergy ozonation and photocatalysis to mineralize low concentration 2, 4-dichlorophenoxiacetic acid in aqueous solution. Chemosphere, 66, 1610–1617. doi: 10.1016/j.chemosphere.2006.08.007.CrossRefGoogle Scholar
  20. Glaze, W. H., Kwang, J. W., & Chapin, D. H. (1987). Chemistry of water treatment process involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Science and Technology, 9(4), 335–352.Google Scholar
  21. González, O., Sans, C., & Espulgas, S. (2007). Sulfamethoxazole abatement by photo-Fenton. Toxicity, inhibition and biodegradability assessment of intermediates. Journal of Hazardous Materials, 146, 459–464. doi: 10.1016/j.jhazmat.2007.04.055.CrossRefGoogle Scholar
  22. Guittoneau, S., Duguet, J. P., Bonnel, C., & Dore, M. (1990). Oxidation of parachloronitrobenzene in dilute aqueous solution by O3 + UV and H2O2 + UV: a comparative study. Ozone Science and Engineering, 12, 73–94.Google Scholar
  23. Gutowska, A., Kaluzna-Czaplińska, J., & Jóźwiak, W. K. (2007). Degradation mechanism of Reactive Orange 113 dye by H2O2/Fe2+ and ozone in aqueous solution. Dyes and Pigments, 74, 41–46. doi: 10.1016/j.dyepig.2006.01.008.CrossRefGoogle Scholar
  24. Haseneder, R., Fdez-Navamuel, B., & Härtel, G. (2007). Degradation of polyethylene glycol by Fenton reaction: a comparative study. Water Science and Technology, 55(12), 83–87. doi: 10.2166/wst.2007.391.CrossRefGoogle Scholar
  25. He, Z., Song, S., Ying, H., Xu, L., & Chen, J. (2007). p-Aminophenol degradation by ozonation combined with sonolysis: operating conditions influence and mechanism. Ultrasonics Sonochemistry, 14, 568–574. doi: 10.1016/j.ultsonch.2006.10.002.CrossRefGoogle Scholar
  26. Iskender, G., Sezer, A., Arslan-Alaton, I., Babuna, F. G., & Okay, O. S. (2007). Treatability of cefazolin antibiotic formulation effluent with O3 and O3/H2O2 processes. Water Science and Technology, 55(10), 217–225. doi: 10.2166/wst.2007.325.CrossRefGoogle Scholar
  27. Jung, Y. T., Oh, B. S., Kang, J. W., Page, M. A., Phillips, M. J., & Mariñas, B. J. (2007). Control of disinfection and halogenated disinfection byproducts by the electrochemical process. Water Science and Technology, 55(12), 213–219. doi: 10.2166/wst.2007.409.CrossRefGoogle Scholar
  28. Kröger, M., & Fels, G. (2007). Combined biological–chemical procedure for the mineralization of TNT. Biodegradation, 18, 413–425. doi: 10.1007/s10532-006-9076-4.CrossRefGoogle Scholar
  29. Lau, T., & Graham, N. (2007). Degradation of the endocrine disruptor carbofuran by UV, O3 and O3/UV. Water Science and Technology, 55(12), 275–280. doi: 10.2166/wst.2007.416.CrossRefGoogle Scholar
  30. Lee, C., Yoon, J., & Gunten, U. V. (2007). Oxidative degradation of N-nitrosodimethylamine by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide. Water Research, 41, 581–590. doi: 10.1016/j.watres.2006.10.033.CrossRefGoogle Scholar
  31. Lei, X., & Maekawa, T. (2007). Electrochemical treatment of anaerobic digestion effluent using a Ti/Pt–IrO2 electrode. Bioresource Technology, 98, 3521–3525. doi: 10.1016/j.biortech.2006.11.018.CrossRefGoogle Scholar
  32. Lesko, T., Colussi, A. J., & Hoffmann, M. R. (2006). Sonochemical decomposition of phenol: evidence for a synergistic effect of ozone and ultrasound for the elimination of total organic carbon from water. Environmental Science & Technology, 40, 6818–6823. doi: 10.1021/es052558i.CrossRefGoogle Scholar
  33. Li, X. Z., Zhao, B. X., & Wang, P. (2007). Degradation of 2, 4-dichlorophenol in aqueous solution by a hybrid oxidation process. Journal of Hazardous Materials, 147, 281–287. doi: 10.1016/j.jhazmat.2006.12.077.CrossRefGoogle Scholar
  34. Mantzavinos, D., & Psillakis, E. (2004). Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 79(5), 431–454. doi: 10.1002/jctb.1020.CrossRefGoogle Scholar
  35. Matheswaran, M., Balaji, S., Cheng, S. J., & Moon, I. S. (2007). Studies on cerium oxidation in catalytic ozonation process: a novel approach for organic mineralization. Catalysis Communications, 8, 1497–1501. doi: 10.1016/j.catcom.2006.12.017.CrossRefGoogle Scholar
  36. Momani, F. A. (2007). Degradation of cyanobacteria anatoxin-a by advanced oxidation processes. Separation and Purification Technology, 57, 85–93. doi: 10.1016/j.seppur.2007.03.008.CrossRefGoogle Scholar
  37. Moreno Escobar, B., Gomez Nieto, M. A., & Hontoria García, E. (2005). Simple tertiary treatment systems. Water Science and Technology: Water Supply, 5(3–4), 35–41.Google Scholar
  38. Muruganandham, M., Chen, S., & Wu, J. (2007). Mineralization of N-methyl-2-purolidone by advanced oxidation process. Separation and Purification Technology, 55, 360–367. doi: 10.1016/j.seppur.2007.01.009.CrossRefGoogle Scholar
  39. Naffrechoux, E., Chanoux, S., Petrier, C., & Suptil, J. (2000). Sonochemical and photochemical oxidation of organic matter. Ultrasonics Sonochemistry, 7, 255–259. doi: 10.1016/S1350-4177(00)00054-7.CrossRefGoogle Scholar
  40. Oller, I., Malato, S., Sánchez Pérez, J. A., Maldonado, M. I., Gernjak, W., & Pérez Estrada, L. A. (2007). Advanced oxidation process-biological system for wastewater containing a recalcitrant pollutant. Water Science and Technology, 55(12), 229–235. doi: 10.2166/wst.2007.411.CrossRefGoogle Scholar
  41. Peralta-Hernández, J. M., Meas-Vong, Y., Rodríguez, F. J., Chapman, T. W., Maldonado, M. I., & Godínez, L. A. (2008). Comparison of hydrogen peroxide-based processes for treating dye-containing wastewater: decoloration and destruction of Orange II azo dye in dilute solution. Dyes and Pigments, 76, 656–662. doi: 10.1016/j.dyepig.2007.01.001.CrossRefGoogle Scholar
  42. Peternel, I. T., Koprivanac, N., Lončarić Božić, A. M., & Kušić, H. M. (2007). Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution. Journal of Hazardous Materials, 148, 477–484. doi: 10.1016/j.jhazmat.2007.02.072.CrossRefGoogle Scholar
  43. Pirkanniemi, K. (2002). Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere, 48, 1047–1060. doi: 10.1016/S0045-6535(02)00168-6.CrossRefGoogle Scholar
  44. Quiang, Z., Chang, J., & Huang, C. (2002). Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Research, 36, 85–94. doi: 10.1016/S0043-1354(01)00235-4.CrossRefGoogle Scholar
  45. Riga, A., Soutsas, K., Ntampegliotis, K., Karayannis, V., & Papapolymerou, G. (2007). Effect of system parameters and of inorganic salts on the decoloration and degradation of Procion H-exl dyes. Comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 processes. Desalination, 211, 72–86. doi: 10.1016/j.desal.2006.04.082.CrossRefGoogle Scholar
  46. Rivera-Utrilla, J., Méndez-Díaz, J., Sánchez-Polo, M., Ferro-García, M. A., & Bautista-Toledo, I. (2006). Removal of the surfactant sodium dodecylbenzensulphonate from water by simultaneous use of ozone and powdered activated carbon: comparison with systems based on O3 and O3/H2O2. Water Research, 40, 1717–1725. doi: 10.1016/j.watres.2006.02.015.CrossRefGoogle Scholar
  47. Rosenfeldt, E. J., Chen, P. J., Kullmanc, S., & Linden, K. G. (2007). Destruction of estrogenic activity in water using UV advanced oxidation. The Science of the Total Environment, 377, 105–113. doi: 10.1016/j.scitotenv.2007.01.096.CrossRefGoogle Scholar
  48. Sharrer, M., & Summerfelt, S. (2007). Ozonation followed by ultraviolet irradiation provides effective bacteria inactivation in a freshwater recirculating system. Aquacultural Engineering, 37, 180–191. doi: 10.1016/j.aquaeng.2007.05.001.CrossRefGoogle Scholar
  49. Shemer, H., & Narkis, N. (2005). Trihalomethanes aqueous solutions sono-oxidation. Water Research, 39, 2704–2710. doi: 10.1016/j.watres.2005.04.043.CrossRefGoogle Scholar
  50. Shu, H. Y. (2006). Degradation of dyehouse effluent containing C. I. Direct Blue 199 by processes of ozonation, UV/H2O2 and sequence of ozonation with UV/H2O2. Journal of Hazardous Materials, 133, 92–98. doi: 10.1016/j.jhazmat.2005.09.056.CrossRefGoogle Scholar
  51. Shu, H. Y., & Chang, M. C. (2005). Pre-ozonation coupled with UV/H2O2 process for the decoloration and mineralization of cotton dyeing effluent and synthesized C. I. Direct Black 22 wastewater. Journal of Hazardous Materials, 121, 127–133. doi: 10.1016/j.jhazmat.2005.01.020.CrossRefGoogle Scholar
  52. Skoumal, M., Cabot, P. L., Centellas, F., Arias, C., Rodríguez, R. M., Garrido, J. A., et al. (2006). Mineralization of paracetamol by ozonation catalyzed with Fe2+, Cu2+ and UVA light. Applied Catalysis B Environmental, 66, 228–240. doi: 10.1016/j.apcatb.2006.03.016.CrossRefGoogle Scholar
  53. Solar Platform at Almería (PSA). (accessed 15 May 2008).
  54. Tanaka, K., Abe, K., & Hisanaga, T. (1996). Photocatalytic water treatment on immobilized TiO2 combined with ozonation. Journal of Photochemistry and Photobiology A Chemistry, 101, 85–87. doi: 10.1016/S1010-6030(96)04393-6.CrossRefGoogle Scholar
  55. Thiruvenkatachari, R., Kwon, T. O., Jun, J. C., Balaji, S., Matheswaran, M., & Moon, I. S. (2007). Application of several advanced oxidation processes for the destruction of terephthalic acid (TPA). Journal of Hazardous Materials, 142, 308–314. doi: 10.1016/j.jhazmat.2006.08.023.CrossRefGoogle Scholar
  56. Tizaoui, C., Mansouri, L., & Bousselmi, L. (2007). Ozone catalysed with solids as an advanced oxidation process for landfill leachate treatment. Water Science and Technology, 55(12), 237–243. doi: 10.2166/wst.2007.414.CrossRefGoogle Scholar
  57. Tong, S. P., Xie, D. M., Wei, H., & Liu, W. P. (2005). Degradation of sulfosalicylic effluents by O3/UV, O3/TiO2/UV, and O3/V-O/TiO2: a comparative study. Ozone Science and Engineering, 27(3), 233–238. doi: 10.1080/01919510590945804.CrossRefGoogle Scholar
  58. Vogelpohl, A. (2007). Applications of AOPs in wastewater treatment. Water Science and Technology, 55(12), 207–211. doi: 10.2166/wst.2007.408.CrossRefGoogle Scholar
  59. Walid, K. L., & Al-Qodah, Z. (2006). Combined advanced oxidation and biological treatment processes for the removal of pesticides from aqueous solutions. Journal of Hazardous Materials, B137, 489–497.Google Scholar
  60. Walling, C. (1975). Fenton’s reagent revisited. Accounts of Chemical Research, 8, 125. doi: 10.1021/ar50088a003.CrossRefGoogle Scholar
  61. Wu, C. H., Chang, C. L., & Kuo, C. Y. (2008). Decolorization of Porción Red MX-5B in electrocoagulation (EC), UV/TiO2 and ozone-related systems. Dyes and Pigments, 76, 187–194. doi: 10.1016/j.dyepig.2006.08.017.CrossRefGoogle Scholar
  62. Wu, J., Muruganandham, M., & Chen, S. (2007). Degradation of DMSO by ozone-based advances oxidation processes. Journal of Hazardous Materials, 149, 218–225. doi: 10.1016/j.jhazmat.2007.03.071.CrossRefGoogle Scholar
  63. Yeber, M. C., Rodríguez, J., Freer, J., Baeza, J., Durán, N., & Mansilla, H. D. (1999). Advanced oxidation of a pulp mill bleaching wastewater. Chemosphere, 39(10), 1679–1688. doi: 10.1016/S0045-6535(99)00068-5.CrossRefGoogle Scholar
  64. Yonar, T., Yonar, G. K., Kestioglu, K., & Azbar, N. (2005). Decolorisation of textile effluent using homogeneous photochemical oxidation processes. Coloration Technology, 121, 258–264. doi: 10.1111/j.1478-4408.2005.tb00283.x.CrossRefGoogle Scholar
  65. Yunrui, Z., Wanpeng, Z., Fundog, L., Jianbing, W., & Shaoxia, Y. (2007). Catalytic activity of Ru/Al2O3 for ozonation of dimethyl phthalate in aqueous solution. Chemosphere, 66, 145–150. doi: 10.1016/j.chemosphere.2006.04.087.CrossRefGoogle Scholar
  66. Zhang, H., Fei, C., Zhang, D., & Tang, F. (2007). Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. Journal of Hazardous Materials, 145, 227–232. doi: 10.1016/j.jhazmat.2006.11.016.CrossRefGoogle Scholar
  67. Zhou, M., Yu, Q., Lei, L., & Barton, G. (2007). Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Separation and Purification Technology, 57, 380–387. doi: 10.1016/j.seppur.2007.04.021.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • J. M. Poyatos
    • 1
    Email author
  • M. M. Muñio
    • 2
  • M. C. Almecija
    • 3
  • J. C. Torres
    • 4
  • E. Hontoria
    • 1
  • F. Osorio
    • 1
  1. 1.Department of Civil EngineeringUniversity of GranadaGranadaSpain
  2. 2.Department of Chemical EngineeringUniversity of AlmeríaAlmeríaSpain
  3. 3.Department of Chemical EngineeringUniversity of GranadaGranadaSpain
  4. 4.EMUASA (Murcia Water Works)MurciaSpain

Personalised recommendations