Skip to main content
Log in

Cadmium Uptake by Yeast, Candida tropicalis, Isolated from Industrial Effluents and Its Potential Use in Wastewater Clean-Up Operations

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

This study is aimed at assessing the ability of metal-resistant yeast, Candida tropicalis, to uptake cadmium from the liquid medium. The minimum inhibitory concentration of Cd2+ against C. tropicalis was 2,800 mg L−1. The yeast also showed tolerance towards Zn2+ (3,100 mg L−1), Ni2+ (3,000 mg L−1), Hg2+ (2,400 mg L−1), Cu2+ (2,300 mg L−1), Cr6+ (2,000 mg L−1), and Pb2+ (1,200 mg L−1). The yeast isolate showed typical growth curves, but low specific rate of growth was observed in the presence of cadmium. The yeast isolate showed optimum growth at 30°C and pH 7. The metal processing ability of the isolate was determined in a medium containing 100 mg L−1 of Cd2+. C. tropicalis could decline Cd2+ 57%, 69%, and 80% from the medium after 48, 96, and 144 h, respectively. C. tropicalis was also able to remove Cd2+ 56% and 73% from the wastewater after 6 and 12 days, respectively. Cd produced an increase in glutathione (GSH) and non-protein thiol levels by 146.15% and 59.67% at 100 mg L−1 concentration, respectively. Metal tolerance and accumulation together with changes in the GSH status and non-protein thiols under Cd exposure were studied in C. tropicalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA (1989). Standard methods for the examination of water and wastewater (18th ed.). Washington, DC: APHA.

    Google Scholar 

  • Balsalobre, L., De-Siloniz, M. I., Validerrama, M. J., Benito, T., Larrea, M. T., & Peinado, J. M. (2003). Occurrence of yeasts in municipal wastes and their behaviour in presence of cadmium copper and zinc. Journal of Basic Microbiology, 43, 185–193. doi:10.1002/jobm.200390021.

    Article  CAS  Google Scholar 

  • Benson, H. J. (1994). Microbiological applications. Laboratory manual in general microbiology. Dubuque: Wan C. Brown.

    Google Scholar 

  • Berdicevsky, I., Lea, D., Marzbach, D., & Yannai, S. (1993). Susceptibility of different yeast species to environmental toxic metals. Environmental Pollution, 80, 41–44. doi:10.1016/0269-7491(93)90007-B.

    Article  CAS  Google Scholar 

  • Chipasa, K. B. (2003). Accumulation and fate of selected heavy metals in a biological wastewater treatment system. Waste Management (New York, N.Y.), 23, 135–143. doi:10.1016/S0956-053X(02)00065-X.

    CAS  Google Scholar 

  • Chisti, Y. (2004). Environmental impact of toxic pollutants. Biotechnology Advances, 6, 431–432. doi:10.1016/j.biotechadv.2003.12.004.

    Article  Google Scholar 

  • Coeurdassier, M., Devaufleury, A., Scheifler, R., Morhain, E., & Badot, P. M. (2004). Effects of cadmium on the survival of three life-stages of the freshwater pulmonate Lymnaea stagnalis (Mollusca: Gastropoda). Bulletin of Environmental Contamination and Toxicology, 72, 1083–1090. doi:10.1007/s00128-004-0354-8.

    Article  CAS  Google Scholar 

  • Delhaize, E., Jackson, P. J., Lujan, L. D., & Robinson, N. J. (1989). Poly (γ-glutamylcysteinyl) glycine synthesis in Datura innoxia and binding with cadmium-role in cadmium tolerance. Plant Physiology, 89, 700–706. doi:10.1104/pp.89.2.700.

    Article  CAS  Google Scholar 

  • Feng, D., & Aldrich, C. (2004). Adsorption of heavy metals by biomaterials derived from the marine alga Ecklonia maxima. Hydrometallurgy, 73, 1–10. doi:10.1016/S0304-386X(03)00138-5.

    Article  CAS  Google Scholar 

  • Fujs, S., Gazdag, Z., Poljšak, B., Stibilj, V., Milačič, R., Pesti, M., et al. (2005). The oxidative stress response of the yeast Candida intermedia to copper, zinc, and selenium exposure. Journal of Basic Microbiology, 45, 125–135. doi:10.1002/jobm.200410480.

    Article  CAS  Google Scholar 

  • Gharieb, M. M., & Gadd, G. M. (1998). Evidence for the involvement of vacuolar activity in metal(loid)s tolerance: vacuola-lacking and defective mutants of Saccharomyces cerevisiae display highersensitivity to chromate, telurite and selenite. Biometals, 11, 101–106. doi:10.1023/A:1009221810760.

    Article  CAS  Google Scholar 

  • Gharieb, M. M., & Gadd, G. M. (2004). Role of glutathione in detoxification of metal(loid)s by Saccharomyces cerevisiae. Biometals, 17, 183–188. doi:10.1023/B:BIOM.0000018402.22057.62.

    Article  CAS  Google Scholar 

  • Holan, Z. R., & Volesky, B. (1995). Accumulation of Cd, lead and nickel by fungal and wood biosorbents. Applied Biochemistry and Biotechnology, 53, 133–146. doi:10.1007/BF02788603.

    Article  CAS  Google Scholar 

  • Israr, M., Sahi, S. V., & Jain, J. (2006). Cadmium accumulation and antioxidant responses in the Sesbania drummondii callus. Archives of Environmental Contamination and Toxicology, 50, 121–127. doi:10.1007/s00244-005-5029-x.

    Article  CAS  Google Scholar 

  • Kim, H. S., Kwack, S. J., & Lee, B. M. (2005). Alteration of cytochrome P-450 and glutathione S-transferase activity in normal and malignant human stomach. Journal of Toxicology and Environmental Health, 68, 1611–1620. doi:10.1080/15287390500182867.

    Article  CAS  Google Scholar 

  • Kujan, P., Prell, A., Šafar, H., Sobotka, M., Řezankat, T., & Holler, P. (2005). Removal of copper ions from dilute solutions by Streptomyces noursei mycelium. Comparison with yeast biomass. Folia Microbiologica, 50, 309–313. doi:10.1007/BF02931411.

    Article  CAS  Google Scholar 

  • Larena, I., Salazar, O., Goncalez, V., Julian, M. C., & Rubio, V. (1999). Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for ascomycetes. Journal of Bacteriology, 75, 187.

    CAS  Google Scholar 

  • Lebrun, M., Audurier, A., & Cossart, P. (1994). Plasmid-borne Cd-resistance genes in Listeria monocytogenes are present on Tn5422, a novel transposon closely related to Tn917. Journal of Bacteriology, 176, 3049–3061.

    CAS  Google Scholar 

  • Li, Z., & Yuan, H. (2006). Characterization of cadmium removal by Rhodotorrula sp. Y11. Applied Microbiology and Biotechnology, 73, 458–463. doi:10.1007/s00253-006-0473-8.

    Article  CAS  Google Scholar 

  • Li, Z., Lu, Y., Zhen, R., Szczypka, M., Thiele, D. J., & Rea, P. A. (1997). A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae; YCF1-catalyzed transport of bis (glutathionato) cadmium. Proceedings of the National Academy of Sciences of the United States of America, 94, 42–47. doi:10.1073/pnas.94.1.42.

    Article  CAS  Google Scholar 

  • Li, Z., Yuan, H., & Hu, X. (2008). Cadmium-resistance in growing Rhodotorrula sp. Y11. Bioresource Technology, 99, 1339–1344. doi:10.1016/j.biortech.2007.02.004.

    Article  CAS  Google Scholar 

  • Macaskie, L. E., & Dean, A. C. R. (1989). Microbial metabolism, desolubilisation and deposition of heavy metals: Metal uptake by immobilized cells and application to the detoxification of liquid wastes. Advances in Biotechnological Processes, 12, 159–172.

    CAS  Google Scholar 

  • Malekzadeh, F., Latifi, A. M., Shahamat, M., Levinand, M., & Colwell, R. R. (2002). Effects of selected physical and chemicals parameters on uranium uptake by the bacterium Chryseomonas MGF-48. World Journal of Microbiology & Biotechnology, 18, 599–602. doi:10.1023/A:1016806314721.

    Article  CAS  Google Scholar 

  • Morales-Barrera, L., & Cristiani-Urbina, E. (2008). Hexavalent chromium removal by a Trichoderma inhamatum fungal strain isolated from tannery effluent. Water, Air, and Soil Pollution, 187, 327–336. doi:10.1007/s11270-007-9520-z.

    Article  CAS  Google Scholar 

  • Moran, L. K., Gutteridge, J. M. C., & Quinlan, G.-J. (2001). Thiols in cellular redox signaling and control. Current Medicinal Chemistry, 8, 763–772.

    CAS  Google Scholar 

  • Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51, 730–750. doi:10.1007/s002530051457.

    Article  CAS  Google Scholar 

  • Noctor, G., Gomez, L., Vanacker, H., & Foyer, C. H. (2002). Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. Journal of Experimental Botany, 53, 1283–1304. doi:10.1093/jexbot/53.372.1283.

    Article  CAS  Google Scholar 

  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139. doi:10.1038/333134a0.

    Article  CAS  Google Scholar 

  • Penninckx, M. J. (2002). An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Research, 2, 295–305.

    CAS  Google Scholar 

  • Pócsi, I., Prade, R. A., & Penninckx, J. (2004). Glutathione, altruistic metabolite in fungi. Advances in Microbial Physiology, 49, 1–76. doi:10.1016/S0065-2911(04)49001-8.

    Article  Google Scholar 

  • Podgorskii, V. S., Kasatkina, T. P., & Lozovaia, O. G. (2004). Yeasts biosorbents of heavy metals. Mikrobiolohichnyi Zhurnal, 1, 91–103.

    Google Scholar 

  • Rama Rao, V. S., Wilson, C. H., & Maruthi Mohan, P. (1997). Zinc resistance in Neurospora crassa. Biometals, 10, 147–156. doi:10.1023/A:1018339425355.

    Article  Google Scholar 

  • Rehman, A., Farooq, H., & Shakoori, A. R. (2007). Copper tolerant yeast, Candida tropicalis, isolated from industrial effluents: Its potential use in wastewater treatment. Pakistan Journal of Zoology, 39, 405–412.

    CAS  Google Scholar 

  • Rehman, A., Farooq, H., & Hasnain, S. (2008). Biosorption of copper by yeast, Loddermyces elongisporus, isolated from industrial effluents: Its potential use in wastewater treatment. Journal of Basic Microbiology, 48, 195–201. doi:10.1002/jobm.200700324.

    Article  CAS  Google Scholar 

  • Rise-Roberts, E. (1998). Remediation of petroleum contaminated soils. Biological, physical and chemical processes. Boca Raton, Florida: CRC.

    Google Scholar 

  • Sanders, C. L. (1986). Toxicological aspect of energy production, (pp. 158–162). New York: MacMillan.

    Google Scholar 

  • Shakoori, A. R., & Qureshi, F. (2000). Cadmium resistant bacteria from industrial effluents and their role in environmental clean-up. Pakistan Journal of Zoology, 32, 165–178.

    CAS  Google Scholar 

  • Shakoori, A. R., Rehman, A., & Haq, R. U. (2004). Multiple metal resistance in the ciliate protozoan, Vorticella microstoma, isolated from industrial effluents and its potential in bioremediation of toxic wastes. Bulletin of Environmental Contamination and Toxicology, 72, 1046–1051. doi:10.1007/s00128-004-0349-5.

    Article  CAS  Google Scholar 

  • Shakoori, A. R., Zill-i-Huma,, Dar, N., & Ali, S. S. (2005). Lead resistant yeast from industrial wastewater capable of decontaminating it of heavy metals. Pakistan Journal of Zoology, 37, 1–11.

    CAS  Google Scholar 

  • Siloniz, M., Balsolobre, C., Valderrama, M., & Peinado, J. (2002). Feasibility of copper uptake by the yeast Pichia guilliermondii isolated form sewage sludge. Research in Microbiology, 153, 173–180. doi:10.1016/S0923-2508(02)01303-7.

    Article  Google Scholar 

  • Singhal, R. K., Anderson, M. E., & Meister, A. (1987). Glutathione, a first line of defense against cadmium toxicity. The FASEB Journal, 1, 220–223.

    CAS  Google Scholar 

  • Suh, J. H., Kim, D. S., Yun, J. W., & Song, S. K. (1998). Process of Pb (II) accumulation in Saccharomyces cerevisiae. Biotechnology Letters, 20, 153–156. doi:10.1023/A:1005376424157.

    Article  CAS  Google Scholar 

  • Unger, M. E., & Roesijadi, G. (1996). Increase in metallothioneins mRNA accumulation during cadmium challenge in oysters pre-exposed to cadmium. Aquatic Toxicology (Amsterdam, Netherlands), 34, 185–193. doi:10.1016/0166-445X(95)00038-6.

    CAS  Google Scholar 

  • Villegas, L. B., Amoroso, M. J., & De-Figueroa, L. I. C. (2005). Copper tolerant yeasts isolated from polluted area of Argentina. Journal of Basic Microbiology, 45, 381–391. doi:10.1002/jobm.200510569.

    Article  CAS  Google Scholar 

  • Yan, G., & Viraraghavan, T. (2003). Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Research, 37, 4486–4496. doi:10.1016/S0043-1354(03)00409-3.

    Article  CAS  Google Scholar 

  • Zafar, S., Aqil, F., & Ahmad, I. (2007). Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresource Technology, 98, 2557–2561. doi:10.1016/j.biortech.2006.09.051.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The technical assistance of Miss Sumbal Zulfiqar and atomic absorption spectrophotometer facilities provided by Dr. A.R. Shakoori (Director, School of Biological Sciences, Pakistan) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rehman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehman, A., Sohail Anjum, M. Cadmium Uptake by Yeast, Candida tropicalis, Isolated from Industrial Effluents and Its Potential Use in Wastewater Clean-Up Operations. Water Air Soil Pollut 205, 149–159 (2010). https://doi.org/10.1007/s11270-009-0062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0062-4

Keywords

Navigation