Skip to main content
Log in

Representation of Particulate Matter COD in Rainfall Runoff from Paved Urban Watersheds

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

For a half century, total suspended solids (TSS) has been the most commonly utilized particulate matter (PM) gravimetric index for wastewater. While TSS has been extended to urban runoff, runoff phenomena are unique. Runoff is unsteady and transports heterodisperse inorganic granulometry, giving rise to the PM index, suspended sediment concentration (SSC). With respect to PM-associated chemical oxygen demand (CODp) in runoff, it is hypothesized that, while the TSS method can represent effluent CODp, the SSC method is required to represent influent CODp. CODp and PM indices (TSS and SSC) for runoff events with mass balances and manual sampling are analyzed to investigate this hypothesis. This study examined a series of rainfall-runoff events captured from an instrumented fully paved urban catchment subject to traffic loadings in Baton Rouge, LA. Results indicate TSS generated substantial event-based mass balance errors for CODp and Δm p (mg/g) across a hydrodynamic separator (HS) as compared to SSC. TSS underestimates sediment-bound COD (>75 µm), a significant portion (maximum of 63% and median of 50%) of influent load. Negative bias by the TSS method for influent CODp load increases as the heterodisperse particle size distribution becomes coarser. Above a PM of 250 mg/L, underestimation of CODp by the TSS method is statistically significant. Utilizing the SSC method, CODp reduction by a HS upstream of a batch clarifier (BC) indicates that a HS does not provide CODp reduction, compared to a BC with 60 min of residence time. Representative PM and CODP assessment suggests frequent BMP and drainage system maintenance to ensure proper operation and reduce pollutant elution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anta, J., Pena, E., Suarez, J., & Cagiao, J. (2006). A BMP selection process based on the granulometry of runoff solids in a separate urban catchment. Water SA, 32(3), 419–428.

    Google Scholar 

  • APAT. (2003). Analytical method for waters, Method 5130, Chemical Oxygen Demand, vol. 29, pp. 781–787. Italy: Agency for Environmental Protection and Technical Services.

    Google Scholar 

  • APHA. (1998). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association (APHA).

    Google Scholar 

  • ASTM. (2000). Standard test method for determining sediment concentration in water samples, D 3977-97. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM. (2002). Standard practice for classification of soils for engineering purposes, D2487-06. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • Barker, D. J., Mannucchi, G. A., Salvi, S. M. L., & Stuckey, D. C. (1999). Characterisation of soluble residual chemical oxygen demand (COD) in anaerobic wastewater treatment effluents. Water Research, 33(11), 2499–2510. doi:10.1016/S0043-1354(98)00489-8.

    Article  CAS  Google Scholar 

  • Barrett, M. E., Kearfott, P., & Malina, J. F. (2006). Stormwater quality benefits of a porous friction course and its effect on pollutant removal by roadside shoulders. Water Environment Research, 78(11), 2177–2185. doi:10.2175/106143005X82217.

    Article  CAS  Google Scholar 

  • Boyles, W. (1997). The science of chemical oxygen demand. Technical information series, Booklet No. 9. HACH Company. Retrieved 13 April 2008 from http://www.hach.com/fmmimghach?/CODE%3AL70531494%7C1

  • Colston, N. V. (1974). Characterization and treatment of urban land runoff. Cincinnati, OH: Environmental Protection Agency.

    Google Scholar 

  • Dean, C. M., Sansalone, J. J., Cartledge, F. K., & Pardue, J. H. (2005). Influence of hydrology on rainfall-runoff metal element speciation. Journal of Environmental Engineering, 131(4), 632–642. doi:10.1061/(ASCE)0733-9372(2005)131:4(632).

    Article  CAS  Google Scholar 

  • Ebbert, J. C., & Wagner, R. J. (1987). Contributions of rainfall to constituent loads in storm runoff from urban catchments. Water Resources Bulletin, 23(5), 867–871.

    CAS  Google Scholar 

  • Fadini, P. S., Jardim, W. F., & Guimaraes, J. R. (2004). Evaluation of organic load measurement techniques in a sewage and waste stabilisation pond. Journal of the Brazilian Chemical Society, 15(1), 131–135. doi:10.1590/S0103-50532004000100020.

    Article  CAS  Google Scholar 

  • Federal Highway Administration (FHWA). (1990). Pollutant loadings and impacts from highway stormwater runoff. Volume IV: Research report data appendix. Report FHWA-RD-88-009. Washington, DC.

  • Gnecco, I., Berretta, C., Lanza, L. G., & La Barbera, P. (2005). Storm water pollution in the urban environment of Genoa, Italy. Atmospheric Research, 77(1–4), 60–73. doi:10.1016/j.atmosres.2004.10.017.

    Article  CAS  Google Scholar 

  • Gnecco, I., Sansalone, J. J., & Lanza, L. G. (2008). Speciation of zinc and copper in stormwater pavement runoff from airside and landside aviation land uses. Water, Air, and Soil Pollution, 192(1–4), 321–336. doi:10.1007/s11270-008-9659-2.

    Article  CAS  Google Scholar 

  • Granato, G.E., Zenone, C., & Cazenas, P.A.(2003). The National highway runoff data and methodology synthesis, Volume I--Technical Issues for monitoring highway runoff and urban stormwater. Report FHWA-EP-03-054.149-153. Washington, DC. Retrieved 4 May 2008 from http://ma.water.usgs.gov/fhwa/products/EP03-054.pdf

  • Gray, J. R., Glysson, G. D., Turcios, L. M., & Schwarz, G. E. (2000). Comparability of suspended-sediment concentration and total suspended solids data. Reston, VA: US Dept. of the Interior, USGS Information Services.

    Google Scholar 

  • Gromaire-Mertz, M. C., Garnaud, S., Gonzalez, A., & Chebbo, G. (1999). Characterisation of urban runoff pollution in Paris. Water Science and Technology, 39(2), 1–8. doi:10.1016/S0273-1223(99)00002-5.

    Article  CAS  Google Scholar 

  • Guo, Q. (2006). Correlation of total suspended solids (TSS) and suspended sediment concentration (SSC) test methods. Final report, SR05-005, New Jersey Department of Environmental Protection, Trenton, NJ. Retrieved 17 May 2008 from http://www.state.nj.us/dep/dsr/soils/tss%20vs%20ssc%20test%20methods.pdf

  • Hoffman, E. J., Latimer, J. S., Hunt, C. D., Mills, G. L., & Quinn, J. G. (1985). Stormwater runoff from highways. Water, Air, and Soil Pollution, 25(4), 349–364. doi:10.1007/BF00283788.

    Article  CAS  Google Scholar 

  • Hossain, M. A., Alam, M., Yonge, D. R., & Dutta, P. (2005). Efficiency and flow regime of a highway stormwater detention pond in Washington, USA. Water, Air, and Soil Pollution, 164(1–4), 79–89. doi:10.1007/s11270-005-2250-1.

    Article  CAS  Google Scholar 

  • ISO. (1993). Water Quality determination of chemical oxygen demand, 2nd edn. International Organization for Standardization (ISO), pp 10–15.

  • Khan, S., Lau, S. L., Kayhanian, M., & Stenstrom, M. K. (2006). Oil and grease measurement in highway runoff - Sampling time and event mean concentrations. Journal of Environmental Engineering, 132(3), 415–422. doi:10.1061/(ASCE)0733-9372(2006)132:3(415).

    Article  CAS  Google Scholar 

  • Kim, J.-Y., & Sansalone, J. J. (2008). Event-based size distributions of particulate matter transported during urban rainfall-runoff events. Water Research, 42(10–11), 2756–2768. doi:10.1016/j.watres.2008.02.005.

    Article  CAS  Google Scholar 

  • Larsen, T., Broch, K., & Andersen, M. R. (1998). First flush effects in an urban catchment area in Aalborg. Water Science and Technology, 37(1), 251–257. doi:10.1016/S0273-1223(97)00776-2.

    Article  CAS  Google Scholar 

  • Legret, M., & Pagotto, C. (1999). Evaluation of pollutant loadings in the runoff waters from a major rural highway. The Science of the Total Environment, 235(1–3), 143–150. doi:10.1016/S0048-9697(99)00207-7.

    Article  CAS  Google Scholar 

  • Levine, A. D., Tchobanoglous, G., & Asano, T. (1991). Size distributions of particulate contaminants in waste-water and their impact on treatability. Water Research, 25(8), 911–922. doi:10.1016/0043-1354(91)90138-G.

    Article  CAS  Google Scholar 

  • Li, Y. X., Lau, S. L., Kayhanian, M., & Stenstrom, M. K. (2005). Particle size distribution in highway runoff. Journal of Environmental Engineering, 131(9), 1267–1276. doi:10.1061/(ASCE)0733-9372(2005)131:9(1267).

    Article  CAS  Google Scholar 

  • Long, E. R., Macdonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19(1), 81–97. doi:10.1007/BF02472006.

    Article  Google Scholar 

  • Maestre, A., & Pitt, R. (2005). The National Stormwater Quality Database, Version 1.1. A compilation and analysis of NPDES stormwater monitoring information. US EPA, Washington, DC. Retrieved 10 June 2008 from http://rpitt.eng.ua.edu/Publications/Stormwater%20Characteristics/NSQD%20EPA.pdf.

  • Memon, F. A., & Butler, D. (2005). Characterisation of pollutants washed off from road surfaces during wet weather. Urban Water Journal, 2(3), 171–182. doi:10.1080/15730620500235437.

    Article  CAS  Google Scholar 

  • Mittal, S. K., & Ratra, R. K. (2000). Toxic effect of metal ions on biochemical oxygen demand. Water Research, 34(1), 147–152. doi:10.1016/S0043-1354(99)00104-9.

    Article  CAS  Google Scholar 

  • Newburn, L. H. (1988). Chapter 13. Modern sampling equipment: Design and application. In L. H. Keith (Ed.), Principles of environmental sampling (p. 209). Washington, DC: American Chemical Society.

    Google Scholar 

  • Pitt, R. (2002). Receiving water impacts associated with urban runoff. In: Hoffman, D., Rattner, B., Burton, G.A., Jr., and Cairns, J., Jr. (Ed.), Handbook of ecotoxicology, 2nd Edition. CRC-Lewis, Boca Raton, FL. Retrieved 4 June 2008 from http://rpitt.eng.ua.edu/Publications/MonitoringandStormwater/stormwater%20impacts%20chapter.PDF

  • Sansalone, J. J., & Buchberger, S. G. (1997). Partitioning and first flush of metals in urban roadway storm water. Journal of Environmental Engineering, 123(2), 134–143. doi:10.1061/(ASCE)0733-9372(1997)123:2(134).

    Article  CAS  Google Scholar 

  • Sansalone, J. J., & Cristina, C. M. (2004). Prediction of gradation-based heavy metal mass using granulometric indices of snowmelt particles. Journal of Environmental Engineering, 130(12), 1488–1497. doi:10.1061/(ASCE)0733-9372(2004)130:12(1488).

    Article  CAS  Google Scholar 

  • Sansalone, J. J., & Kim, J.-Y. (2008). Transport of aggregated particulate matter fractions in urban pavement runoff. Journal of Environmental Quality, 37(5), 1883–1893. doi:10.2134/jeq2007.0495.

    Article  CAS  Google Scholar 

  • Sansalone, J. J., & Ying, G. (2008). Partitioning and granulometric distribution of metal leachate from urban traffic dry deposition particulate matter subject to acidic rainfall. Water Research, 42, 4146–4162.

    Article  CAS  Google Scholar 

  • Sansalone, J. J., Koran, J. M., Smithson, J. A., & Buchberger, S. G. (1998). Physical characteristics of urban roadway solids transported during rain events. Journal of Environmental Engineering, 124(5), 427–440. doi:10.1061/(ASCE)0733-9372(1998)124:5(427).

    Article  CAS  Google Scholar 

  • Sansalone, J. J., Hird, J. P., Cartledge, F. K., & Tittlebaum, M. E. (2005). Event-based stormwater quality and quantity loadings from elevated urban infrastructure affected by transportation. Water Environment Research, 77(4), 348–365. doi:10.2175/106143005X51932.

    Article  CAS  Google Scholar 

  • SAS Institute. (1997). SAS/STAT Software: Changes and Enhancements, Release 6.12. Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Selbig, W. R., Bannerman, R., & Bowman, G. (2007). Improving the accuracy of sediment-associated constituent concentrations in whole storm water samples by wet-sieving. Journal of Environmental Quality, 36, 226–232. doi:10.2134/jeq2006.0147.

    Article  CAS  Google Scholar 

  • Taebi, A., & Droste, R. L. (2004). First flush pollution load of urban stormwater runoff. Journal of Environmental Engineering and Science, 3(4), 301–309. doi:10.1139/s04-018.

    Article  CAS  Google Scholar 

  • Tchobanoglous, G., Burton, F. L., Stensel, H. D., & Metcalf, E. (2003). Wastewater engineering : treatment and reuse. Boston, MA: McGraw-Hill.

    Google Scholar 

  • USEPA. (1983). Results of the nationwide urban runoff program: final report. Washington, DC: Water Planning Division, US Environmental Protection Agency (USEPA).

    Google Scholar 

  • USEPA. (1984). Title 40 Protection of the Environment: Part 133 Secondary Treatment Regulation. Federal Register, 37006, 957–961. Retrieved 10 June 2008 from http://www.gpoaccess.gov/ecfr/index.html.

  • USEPA. (2000). National water quality inventory: 2000 report to Congress. Report EPA-841-R-02-001. Washington, DC. Retrieved 4 May 2008 from http://www.epa.gov/305b/2000report/

  • Van Dolah, R. F., Riekerk, G. H. M., Levisen, M. V., Scott, G. I., Fulton, M. H., Bearden, D., et al. (2005). An evaluation of polycyclic aromatic hydrocarbon (PAH) runoff from highways into estuarine wetlands of South Carolina. Archives of Environmental Contamination and Toxicology, 49(3), 362–370. doi:10.1007/s00244-004-0210-1.

    Article  CAS  Google Scholar 

  • Wakelin, S. C., Elefsiniotis, P., & Wareham, D. G. (2003). Assessment of stormwater retention basin water quality in Winnipeg, Canada. Water Quality Research Journal of Canada, 38(3), 433–450.

    CAS  Google Scholar 

  • Wu, D. (2007). NPDES compliance summary report, fiscal year 2006. Report ENQUAD 2007-04. Appendix A. Water Resources Authority. Boston, MA. Retrieved 4 May 2008 from http://www.mwra.state.ma.us/harbor/enquad/pdf/2007-04.pdf

  • Wu, J. S., Allan, C. J., Saunders, W. L., & Evett, J. B. (1998). Characterization and pollutant loading estimation for highway runoff. Journal of Environmental Engineering, 124(7), 584–592. doi:10.1061/(ASCE)0733-9372(1998)124:7(584).

    Article  CAS  Google Scholar 

  • Ying, G., & Sansalone, J. J. (2008). Granulometric relationships for urban source area runoff as a function of hydrologic event classification and sedimentation. Water, Air, and Soil Pollution, 193(1–4), 229–246. doi:10.1007/s11270-008-9685-0.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Yeop Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JY., Sansalone, J.J. Representation of Particulate Matter COD in Rainfall Runoff from Paved Urban Watersheds. Water Air Soil Pollut 205, 113–132 (2010). https://doi.org/10.1007/s11270-009-0060-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0060-6

Keywords

Navigation