Skip to main content
Log in

Influence of Major Anions on As(V) Adsorption by Synthetic 2-line Ferrihydrite. Kinetic Investigation and XPS Study of the Competitive Effect of Bicarbonate

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The potential competitive effect of background electrolytes (Na2HPO4 ·2H2O, NaHCO3, Na2SO4 and NaCl solutions) on arsenate adsorption onto synthetic 2-line ferrihydrite has been studied by means of kinetic batch experiments conducted at pH values from 4.0 to 10.0 and at anionic concentrations of 0.01 and 0.1 M. The results indicate that the adsorptive capacity of ferrihydrite for arsenate decreases strongly in the presence of phosphate species at pH in the range of 4–10 and in the presence of bicarbonate at pH 8.3 as a consequence of their competitive effect. Analogously to phosphate, a surface interaction of inner-sphere type between ferrihydrite and bicarbonate is suggested. Chloride has negligible effects on arsenate adsorption processes, confirming it as an outer-sphere ion that does not compete with the inner-sphere binding peculiar to arsenate onto ferrihydrite. Sulphate exhibits an intermediate behaviour; at 0.01 M concentration, the competitive effect of sulphate is similar to that of chloride, whereas at 0.1 M concentration sulphate shows a moderate influence on arsenate adsorption. The results of the kinetic studies can be summarised by the following order of competitive capacity: phosphate > carbonate > sulphate > chloride. The process of arsenate adsorption follows pseudo-second order kinetics and the reaction half-time notably increases in the presence of strong competitor anions such as phosphate and carbonate with respect to an ineffective competitor anion such as chloride. Modelling of arsenate adsorption with PHREEQC, according to the Generalized Two-Layer Model, confirms that the pH effect is notably less important than the competitive effect of carbonate species in determining the amount of arsenate adsorbed onto ferrihydrite at pH 8.3 in 0.1 M NaHCO3 solution, whereas the model greatly underestimates the competitive effect of carbonate species at pH 8.3 in 0.01 M NaHCO3 solution. The results of the batch experiments in 0.1 M NaHCO3 solution are substantiated by XPS analyses of ferrihydrite after immersion in the same solution, both with and without dissolved arsenate. XPS confirms the interaction between ferrihydrite surface and arsenate; the binding energy of As3d shifts towards higher binding energies after adsorption with respect to the pure compound Na2HAsO4·7H2O taken as reference standard. In presence of carbonate species, the As3d binding energy is found at intermediate values. XPS quantitative analysis shows a depletion of arsenate on ferrihydrite surface, providing further evidence of the competition of the two species (i.e. arsenate and bicarbonate) for the ferrihydrite adsorption sites. Important environmental implications concerning arsenic mobility, as well as possible application in various fields (e.g. irrigation agriculture, soil decontamination, water treatment), might derive from these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M. M., Bhuyian, M. A. H., et al. (2004). Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Applied Geochemistry, 19, 181–200. doi:10.1016/j.apgeochem.2003.09.006.

    Article  CAS  Google Scholar 

  • Anawar, H. M., Akai, J., & Sakugawa, H. (2004). Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater. Chemosphere, 54, 753–762. doi:10.1016/j.chemosphere.2003.08.030.

    Article  CAS  Google Scholar 

  • Antelo, J., Avena, M., Fiol, S., Lopez, R., & Arce, F. (2005). Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface. Journal of Colloid and Interface Science, 285, 476–486. doi:10.1016/j.jcis.2004.12.032.

    Article  CAS  Google Scholar 

  • Appelo, C. A. J., Van der Weiden, M. J. J., Tournassat, C., & Charlet, L. (2002). Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environmental Science & Technology, 36, 3096–3103. doi:10.1021/es010130n.

    Article  CAS  Google Scholar 

  • Arai, Y., & Sparks, D. L. (2001). ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite–water interface. Journal of Colloid and Interface Science, 241, 317–326. doi:10.1006/jcis.2001.7773.

    Article  CAS  Google Scholar 

  • Arai, Y., Elzinga, E. J., & Sparks, D. L. (2001). X-ray absorption spectroscopic investigation of arsenite and arsenate adsorption at the aluminum oxide–water interface. Journal of Colloid and Interface Science, 235, 80–88. doi:10.1006/jcis.2000.7249.

    Article  CAS  Google Scholar 

  • Arai, Y., Sparks, D. L., & Davis, J. A. (2004). Effects of dissolved carbonate on arsenate adsorption and surface speciation at the hematite–water interface. Environmental Science & Technology, 38, 817–824. doi:10.1021/es034800w.

    Article  CAS  Google Scholar 

  • Atzei, D., Da Pelo, S., Elsener, B., Fantauzzi, M., Frau, F., Lattanzi, P., et al. (2003). The chemical state of arsenic in minerals of environmental interest—an XPS and an XAES study. Annali di Chimica, 93, 11–19.

    CAS  Google Scholar 

  • Beaulieu, B. T., & Savage, K. S. (2005). Arsenate adsorption structures on aluminum oxide and phyllosilicate mineral surfaces in smelter-impacted soils. Environmental Science & Technology, 39, 3571–3579. doi:10.1021/es048836f.

    Article  CAS  Google Scholar 

  • Bigham, J.M., & Nordstrom, D.K.(2000). Iron and aluminum hydroxysulfates from acid sulfate waters. In C.N. Alpers, J.L. Jambor, & D.K. Nordstrom (Eds.) Sulfate Minerals (pp. 351–403). Reviews in Mineralogy and Geochemistry, MSA Washington DC, Vol. 40.

  • Charlet, L., Diese, N., & Stumm, W. (1993). Sulfate adsorption on a variable charge soil and on reference material. Agriculture Ecosystems & Environment, 47, 87–102. doi:10.1016/0167-8809(93)90104-W.

    Article  CAS  Google Scholar 

  • Chiu, V. Q., & Hering, J. G. (2000). Arsenic adsorption and oxidation at manganite surface. 1. Method for simultaneous determination of adsorbed and dissolved arsenic species. Environmental Science & Technology, 34, 2029–2043. doi:10.1021/es990788p.

    Article  CAS  Google Scholar 

  • Ding, M., de Jong, B. H. W. S., Roosendaal, S. J., & Vredenberg, A. (2000). XPS studies on the electronic structure of bonding between solid and solutes: adsorption of arsenate, chromate, phosphate, Pb2+, and Zn2+ ions on amorphous black ferric oxyhydroxide. Geochimica et Cosmochimica Acta, 64, 1209–1219. doi:10.1016/S0016-7037(99)00386-5.

    Article  CAS  Google Scholar 

  • Dixit, S., & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental Science & Technology, 37, 4182–4189. doi:10.1021/es030309t.

    Article  CAS  Google Scholar 

  • Dutrizac, J. E., & Jambor, J. L. (1988). The synthesis of crystalline scorodite, FeAsO4 ·2H2O. Hydrometallurgy, 19, 377–384. doi:10.1016/0304-386X(88)90042-4.

    Article  CAS  Google Scholar 

  • Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling—hydrous ferric oxides. New York: Wiley.

    Google Scholar 

  • Frau, F., Ardau, C., & Rundeddu, L. (2004). Leaching/adsorption tests on As-contaminated samples from the Baccu Locci mine, Italy. In R. B. Wanty & R. R. Seal II (Eds.), Proceedings of the Eleventh International Symposium on Water–Rock Interaction—WRI-11 vol. 2, pp. 1499–1503. The Netherlands: Balkema.

    Google Scholar 

  • Fuller, C. C., Davis, J. A., & Waychunas, G. A. (1993). Surface chemistry of ferrihydrite: part 2. Kinetics of arsenate adsorption and coprecipitation. Geochimica et Cosmochimica Acta, 57, 2271–2282. doi:10.1016/0016-7037(93)90568-H.

    Article  CAS  Google Scholar 

  • Gao, Y., & Mucci, A. (2001). Acid base reaction, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCl solution. Geochimica et Cosmochimica Acta, 65, 2361–2378. doi:10.1016/S0016-7037(01)00589-0.

    Article  CAS  Google Scholar 

  • Gao, Y., & Mucci, A. (2003). Individual and competitive adsorption of phosphate and arsenate on goethite in artificial sea water. Chemical Geology, 199, 91–109. doi:10.1016/S0009-2541(03)00119-0.

    Article  CAS  Google Scholar 

  • Goh, K. H., & Lim, T. T. (2005). Arsenic fractionation in a fine soil fraction and influence of various anions on its mobility in the subsurface environment. Applied Geochemistry, 20, 229–239. doi:10.1016/j.apgeochem.2004.08.004.

    Article  CAS  Google Scholar 

  • Goldberg, S., & Glaubic, R. A. (1988). Anion sorption on a calcareous montmorillonitic soil—arsenic. Soil Science Society of America Journal, 52, 1297–1300.

    CAS  Google Scholar 

  • Hansmann, D. G., & Anderson, M. A. (1985). Using electrophoresis in modeling sulfate, selenite, and phosphate adsorption onto goethite. Environmental Science & Technology, 19, 544–551. doi:10.1021/es00136a010.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 76(4), 332–340. doi:10.1205/095758298529696.

    Article  CAS  Google Scholar 

  • Hug, S. T. (1997). In situ Fourier transform infrared measurements of sulfate adsorption on hematite in aqueous solutions. Journal of Colloid and Interface Science, 188, 415–422. doi:10.1006/jcis.1996.4755.

    Article  CAS  Google Scholar 

  • Jain, A., Raven, K. P., & Loeppert, R. H. (1999). Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH-release stoichiometry. Journal of Colloid and Interface Science, 33, 1179–1184.

    CAS  Google Scholar 

  • Kinjo, T., & Pratt, P.F. (1971). Nitrate adsorption: II. Competition with chloride, sulphate and phosphate. Soil Science Society of America Proceedings, 32, 725–728.

    Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24(4), 1–39.

    Google Scholar 

  • Manceau, A. (1995). The mechanism of anion adsorption on iron oxides: evidence for the bonding of arsenate. Geochimica et Cosmochimica Acta, 59, 3647–3657. doi:10.1016/0016-7037(95)00275-5.

    Article  CAS  Google Scholar 

  • Manning, B. A., & Goldberg, S. (1997a). Arsenic(III) and arsenic(V) adsorption on three California soils. Soil Science, 162, 886–895. doi:10.1097/00010694-199712000-00004.

    Article  CAS  Google Scholar 

  • Manning, B. A., & Goldberg, S. (1997b). Adsorption and stability of arsenic (III) at the clay mineral–water interface. Environmental Science & Technology, 31, 2005–2011. doi:10.1021/es9608104.

    Article  CAS  Google Scholar 

  • Meng, X., Korfiatis, G. P., Bang, S., & Bang, K. W. (2002). Combined effect of anions on arsenic removal by iron hydroxides. Toxicology Letters, 133, 103–111. doi:10.1016/S0378-4274(02)00080-2.

    Article  CAS  Google Scholar 

  • O'Reilly, S. E., Strawn, D. G., & Sparks, D. L. (2001). Residence time effects on arsenate/desorption mechanism on goethite. Soil Science Society of America Journal, 66, 67–77.

    Google Scholar 

  • Parkhurst, D.L., & Appelo, C.A.J.(1999). User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS, Water-Resources Investigations Report 99-4259, Denver, Colorado.

  • Peak, J. D., Sparks, D. L., & Ford, R. G. (1999). An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite. Journal of Colloid and Interface Science, 218, 289–299. doi:10.1006/jcis.1999.6405.

    Article  CAS  Google Scholar 

  • Persson, P., Nilsson, N., & Sjoberg, S. (1996). Structure and bonding of orthophosphate ions at the iron oxide–aqueous interface. Journal of Colloid and Interface Science, 177, 263–275. doi:10.1006/jcis.1996.0030.

    Article  CAS  Google Scholar 

  • Pierce, M. L., & Moore, C. B. (1982). Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Research, 1, 1247–1253. doi:10.1016/0043-1354(82)90143-9.

    Article  Google Scholar 

  • Raven, K., Jain, A., & Loeppert, R. H. (1998). Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium and adsorption envelopes. Environmental Science & Technology, 32, 344–349. doi:10.1021/es970421p.

    Article  CAS  Google Scholar 

  • Reilman, R. F., Msezane, A., & Manson, S. T. (1976). Relative intensities in photoelectron spectroscopy of atoms and molecules. Journal of Electron Spectroscopy and Related Phenomenon, 8, 389–394. doi:10.1016/0368-2048(76)80025-4.

    Article  CAS  Google Scholar 

  • Rietra, R. P. J. J., Himstra, T., & van Riemsdijk, W. H. (2000). Electrolyte anion affinity and its effect on oxyanion adsorption on goethite. Journal of Colloid and Interface Science, 229, 199–206. doi:10.1006/jcis.2000.6982.

    Article  CAS  Google Scholar 

  • Riveros, P. A., Dutrizac, J. E., & Spencer, P. (2001). Arsenic disposal practices in the metallurgical industry. Canadian Metallurgical Quarterly, 40, 395–420.

    CAS  Google Scholar 

  • Scofield, J. H. (1976). Hartree–Slater subshell photoionization cross-sections at 1254 and 1487 eV. Journal of Electron Spectroscopy and Related Phenomenon, 8, 129–137. doi:10.1016/0368-2048(76)80015-1.

    Article  CAS  Google Scholar 

  • Seah, M. P. (2001). ISO 15472:2001—Surface chemical analysis—X-ray photoelectron spectrometers—Calibration of energy scales. Surface and Interface Analysis, 31, 721. doi:10.1002/sia.1076.

    Article  CAS  Google Scholar 

  • Seah, M. P., & Dench, W. A. (1979). Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surface and Interface Analysis, 1, 2–11. doi:10.1002/sia.740010103.

    Article  CAS  Google Scholar 

  • Smedley, P., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568. doi:10.1016/S0883-2927(02)00018-5.

    Article  CAS  Google Scholar 

  • Smith, K.S. (1999). Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. In G.S. Plumlee, & M.J. Logsdon (Eds.) The Environmental Geochemistry of Mineral Deposits. Part A: Processes, Techniques, and Health Issues (pp. 161–182). Reviews in Economic Geology, Vol. 6A, Society of Economic Geologists.

  • Su, C., & Suarez, D. L. (1997). In situ infrared speciation of adsorbed carbonate on aluminum and iron oxides. Clays and Clay Minerals, 45, 814–825. doi:10.1346/CCMN.1997.0450605.

    Article  CAS  Google Scholar 

  • Sun, X., & Doner, H. E. (1996). An investigation of arsenate and arsenite bonding structures on goethite by FTIR. Soil Science, 161, 865–872. doi:10.1097/00010694-199612000-00006.

    Article  CAS  Google Scholar 

  • Villalobos, M., & Leckie, J. O. (2000). Carbonate adsorption on goethite under closed and open CO2 conditions. Geochimica et Cosmochimica Acta, 64, 3787–3802. doi:10.1016/S0016-7037(00)00465-8.

    Article  CAS  Google Scholar 

  • Villalobos, M., & Leckie, J. O. (2001). Surface complexation modeling and FTIR study of carbonate adsorption to goethite. Journal of Colloid and Interface Science, 235, 15–32. doi:10.1006/jcis.2000.7341.

    Article  CAS  Google Scholar 

  • Waychunas, G. A., Davis, J. A., & Fuller, C. C. (1993). Surface chemistry of ferrihydrite: part I. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochimica et Cosmochimica Acta, 57, 2251–2269. doi:10.1016/0016-7037(93)90567-G.

    Article  CAS  Google Scholar 

  • Wijnja, H., & Schulthess, C. P. (1999). ATR-FTIR and DRIFT spectroscopy of carbonate species at the aged γ-Al2O3/water interface. Spectrochimica Acta. Part A: Molecular Spectroscopy, 55, 861–872. doi:10.1016/S1386-1425(98)00236-4.

    Article  Google Scholar 

  • Wijnja, H., & Schulthess, C. P. (2001). Carbonate adsorption mechanism on goethite studied with ATR-FTIR, DRIFT, and proton coadsorption measurements. Soil Science Society of America Journal, 65, 324–330.

    CAS  Google Scholar 

  • Wilkie, J. A., & Hering, J. G. (1996). Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107, 97–110. doi:10.1016/0927-7757(95)03368-8.

    Article  CAS  Google Scholar 

  • Zhang, P. C., & Sparks, D. L. (1990). Kinetics and mechanisms of sulfate adsorption/desorption on goethite using pressure-jump relaxation. Soil Science Society of America Journal, 54, 1266–1273.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Italian Ministry of Education, University and Research (PRIN 2006 to L. Fanfani; ex-60% funds to F. Frau) and by the Fondazione Banco di Sardegna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Frau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frau, F., Addari, D., Atzei, D. et al. Influence of Major Anions on As(V) Adsorption by Synthetic 2-line Ferrihydrite. Kinetic Investigation and XPS Study of the Competitive Effect of Bicarbonate. Water Air Soil Pollut 205, 25–41 (2010). https://doi.org/10.1007/s11270-009-0054-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0054-4

Keywords

Navigation