Skip to main content
Log in

Control of Algal Scum Using Top-Down Biomanipulation Approaches and Ecosystem Health Assessments for Efficient Reservoir Management

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The objectives of this study were algal control and health assessments in a temperate eutrophic reservoir. Laboratory and mesocosm-scale in situ top-down biomanipulation experiments using planktivorous fishes and filter-feeding macroinvertebrates were conducted along with identification of the limiting nutrient using nutrient enrichment bioassays (NEBs), and ecosystem health evaluation based on the modified index of biological integrity model (Reservoir Ecosystem Health Assessment; REHA). Nutrients and N/P ratio analyses during 5 years revealed that the reservoir was in a eutrophic–hypertrophic state and that the key limiting nutrients, based on the NEBs, varied among seasons. Reservoir trophic guilds indicated declines in sensitive and endemic fish species and dominance of tolerant omnivores. Model values from multimetric REHAs averaged 25.8, indicating that the ecological health was in “fair to poor” condition. Overall microcosm biomanipulation tests suggested that macroinvertebrates, specifically Palaemon paucidens and Caridina denticulata, were effective candidates for phytoplankton control, compared to fishes. In situ mesocosm experiments revealed the highest removal rates with bluegreen algae and a phytoplankton size fraction of 2–19 μm (R e > 90%, Mann–Whitney U = 64.5–74.0, p < 0.01), the dominant fractions in the reservoir. Our biomanipulation technique may provide a key tool for efficient management and restoration of eutrophied reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albright, M. F., Harman, W. N., Tibbits, W. T., Gray, M. S., Warner, D. M., & Hamway, R. J. (2004). Biomanipulation: A classic example in a shallow eutrophic pond. Lake and Reservoir Management, 20(3), 181–187.

    Article  CAS  Google Scholar 

  • An, K.-G. (2001). Hydrological significance on interannual variability of cations, anions, and conductivity in a large reservoir ecosystem. Korean Journal of Limnology, 34, 1–8.

    Google Scholar 

  • An, K.-G. (2002a). An influence of point source and flow events on inorganic nitrogen fractions in a large artificial reservoir. Korean Journal of Limnology, 34, 350–357.

    Google Scholar 

  • An, K.-G. (2002b). The impact of monsoon on seasonal variability of basin morphology and hydrology. Korean Journal of Limnology, 33, 342–349.

    Google Scholar 

  • An, K.-G., & Han, J.-H. (2007). A development of multi-metric approach for ecological health assessments in lentic ecosystems. Korean Journal of Limnology, 40(1), 72–81.

    Google Scholar 

  • An, K.-G., Jung, S.-H., & Choi, S.-S. (2001). An evaluation on health conditions of Pyong-Chang River using the index of biological integrity (IBI) and qualitative habitat evaluation index (QHEI). Korean Journal of Limnology, 34, 153–165.

    Google Scholar 

  • An, K.-G., Ahn, K.-H., Urchin, C. G., & Park, S. S. (2003). Dynamics of nitrogen, phosphorus, algal biomass, and suspended solids in an artificial lentic ecosystem and significant implications of regional hydrology. Journal of Environmental Biology, 24(1), 29–38.

    Google Scholar 

  • Annadotter, H., Cronberg, G., Aagren, R., Lundstedt, B., Nilsson, P. A., & Ströbäck, S. (1999). Multiple techniques for lake restoration. Hydrobiologia, 395/396, 77–85. doi:10.1023/A:1017011132649.

    Article  CAS  Google Scholar 

  • APHA. (1995). Standard methods (19th ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Attayde, J. L., & Hansson, L.-A. (2001). The relative importance of fish predation and excretion effects on planktonic communities. Limnology and Oceanography, 46, 1001–1012.

    Google Scholar 

  • Barbour, M.T., Gerritsen, J., Snyder, B.D., & Stribling, J.B.(1999). Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish. Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C. xiv, 11 chapters, 4 appendices.

  • Beveridge, M. C. M., Baird, D. J., Rahmatullah, S. M., Lawton, L. A., Beattie, K. A., & Codd, G. A. (1993). Grazing rates on toxic and non-toxic strains of cyanobacteria by Hypophthalmichthys molitrix and Oreochromis niloticus. Journal of Fish Biology, 43, 901–907. doi:10.1111/j.1095-8649.1993.tb01164.x.

    Article  Google Scholar 

  • Blanco, S., Romo, S., & Fernandez-Alaez, M. (2008). Response of epiphytic algae to nutrient loading and fish density in a shallow lake: A mesocosm experiment. Hydrobiologia, 600, 65–76. doi:10.1007/s10750-007-9176-0.

    Article  CAS  Google Scholar 

  • Brooks, J. L., & Dodson, S. I. (1965). Predation, body size and composition of plankton. Science, 150, 28–35. doi:10.1126/science.150.3692.28.

    Article  CAS  Google Scholar 

  • Cairns, J,. Jr, McCormick, P. V., & Niedrlehner, B. R. (1993). A proposed framework for developing indicators of ecological health. Hydrobiologia, 263, 1–44. doi:10.1007/BF00006084.

    Article  Google Scholar 

  • Cammen, L. M. (1980). Ingestion rate: An empirical model for aquatic deposit feeders and detritivores. Oecologia, 44, 303–310. doi:10.1007/BF00545232.

    Article  Google Scholar 

  • Carlson, R. E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22(2), 361–369.

    CAS  Google Scholar 

  • Carpenter, S. R., & Kitchell, J. F. (1993). The trophic cascade in lakes. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Carpenter, S. R., Kitchell, J. F., Hodgson, J. R., Cochran, P. A., Elser, J. J., Elser, M. M., et al. (1987). Regulation of lake primary productivity by food web structure. Ecology, 68, 1863–1876. doi:10.2307/1939878.

    Article  Google Scholar 

  • Carpenter, S. R., Cole, J. J., Kitchell, J. F., & Pace, M. L. (1998). Impact of dissolved organic carbon, phosphorus and grazing on phytoplankton biomass and production in experimental lakes. Limnology and Oceanography, 43, 73–80.

    CAS  Google Scholar 

  • Carpenter, S. R., Brock, W. A., Cole, J. J., Kitchell, J. F., & Pace, M. L. (2008). Leading indicators of trophic cascades. Ecology Letters, 11, 128–138.

    CAS  Google Scholar 

  • Collins, S. L., & Glenn, S. M. (1991). Importance of spatial and temporal dynamics in species regional abundance and distribution. Ecology, 73(2), 654–664. doi:10.2307/2937205.

    Article  Google Scholar 

  • Coveney, M. F., Stites, D. L., Lowe, E. F., Battoe, L. E., & Conrow, R. (2002). Nutrient removal from eutrophic lake water by wetland filtration. Ecological Engineering, 19, 141–159. doi:10.1016/S0925-8574(02)00037-X.

    Article  Google Scholar 

  • Crumpton, W. G., Isenhart, T. M., & Mitchell, P. D. (1992). Nitrate and organic N analyses with second-derivative spectroscopy. Limnological Oceanography, 37, 907–913.

    Article  CAS  Google Scholar 

  • deBernardi, R., & Giussani, G. (1990). Are blue-green algae a suitable food for zooplankton? An overview. Hydrobiologia, 200/201, 29–41.

    Article  Google Scholar 

  • Downing, J. A., & McCauley, E. (1992). The nitrogen: Phosphorus relationship in lakes. Limnology and Oceanography, 37, 936–945.

    CAS  Google Scholar 

  • Drake, M. T., & Pereira, D. L. (2002). Development of a fish-based index of biotic integrity for small inland lakes in Central Minnesota. North American Journal of Fisheries Management, 22, 1105–1123.

    Article  Google Scholar 

  • Drenner, R. W., & Hambright, K. D. (2002). Piscivores, trophic cascades, and lake management. The Scientific World Journal, 2, 284–307.

    CAS  Google Scholar 

  • Elser, J. J., Marzolf, E. R., & Goldman, C. R. (1990). Phosphorus and nitrogen limitation of phytoplankton growth in the fresh waters of North America: A review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences, 47, 1468–1477.

    Article  CAS  Google Scholar 

  • Fleeger, J. W., Carman, K. R., Webb, S., Hilbun, N., & Pace, M. C. (1999). Consumption of microalgae by the grass shrimp Palaemonetes pugio. Journal of Crustacean Biology, 19(2), 324–336.

    Article  Google Scholar 

  • Forsberg, G., & Ryding, S. O. (1980). Eutrophication parameters and tropic state indices in 30 waste receiving Swedish lakes. Archiv fur Hydrobiology, 89, 189–207.

    CAS  Google Scholar 

  • Gulati, R. D., & van Donk, E. (2002). Lakes in The Netherlands, their origin, eutrophication and restoration: State-of-the-art review. Hydrobiologia, 478(1–3), 73–106.

    Article  Google Scholar 

  • Hansson, L. A., Annadoter, H., Bergman, E., Hamrin, S. F., Jeppesen, E., Kairesalo, T., et al. (1998). Biomanipulation as an application of food chain theory: Constraints, synthesis and recommendations for temperate lakes. Ecosystems, 1, 558–574.

    Article  Google Scholar 

  • Hansson, L. A., Gyllström, M., Ståhl-Delbanco, A., & Senssson, M. (2004). Responses to fish predation and nutrients by plankton at different levels of taxonomic resolution. Freshwater Biology, 49, 1538–1550.

    Article  Google Scholar 

  • Hecky, R. E., & Kilham, P. (1988). Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnology and Oceanography, 33, 796–822.

    Article  CAS  Google Scholar 

  • Hilden, M., & Rapport, D. (1993). Four centuries of cumulative impacts on a Finnish river and its estuary: An ecosystem health approach. Journal of Aquatic Ecosystem Stress and Recovery, 2(4), 261–275.

    Article  Google Scholar 

  • Hunt, R., & Matveev, V. F. (2005). The effects of nutrients and zooplankton community structure on phytoplankton growth in a subtropical Australian reservoir: An enclosure study. Limnologica, 35, 90–101.

    Google Scholar 

  • Hutchinson, G. E. (1957). A treatise on limnology. Introduction to lake biology and limnoplankton, vol II. New York: Wiley.

    Google Scholar 

  • Hwang, S. J., Kim, H. S., & Shin, J. K. (2001). Filter-feeding effect of a freshwater bivalve (Corbicula leana PRIME) on phytoplankton. Korean Journal of Limnology, 34(4), 298–309.

    Google Scholar 

  • Jeppesen, E., Jensen, J. P., Kristensen, P., Søndergaard, M., Mortensen, M., Sortkjaer, O., et al. (1990). Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes. II. Threshold levels, long-term stability and conclusions. Hydrobiologia, 200/201, 219–227.

    Article  Google Scholar 

  • Jones, J. R., An, K.-G., & Knowlton, M. F. (2003). Trophic state, seasonal patterns and empirical models in South Korean reservoirs. Lake and Reservoir Management, 19(1), 64–78.

    Article  Google Scholar 

  • KARICO (2001). Report of water monitoring in Agricultureal reservoirs, S. Korea. Korea Agriculture and Rural Infrastructure Cooperation (in Korean)

  • Karr, J. R. (1981). Assessment of biotic integrity using fish communities. Fisheries, 6(6), 21–27.

    Article  Google Scholar 

  • Karr, J. R., & Chu, E. W. (1997) Biological monitoring and assessment: Using multimetric indexes effectively. EPA 235-R97-001. Seattle: University of Washington.

  • Karr, J. R., Fausch, K. D., Angermeier, P. L., Yant, P. R., & Schlosser, I. J. (1986). Assessing biological integrity of running waters: A method and its rationale. Special Publication 5. Champaign: Illinois Natural History Survey.

  • Kasai, F., Takamura, N., & Hatakeyama, S. (1993). Effects of symetrine on growth of various freshwater algal taxa. Environmental Pollution, 76, 77–83.

    Article  Google Scholar 

  • Kim, I. S. (1995). The conservation and status of threatened freshwater fishes in Korea. In H.-J. Lee & I. S. Kim (Eds.), Proceedings of ichthyofauna and characteristics of freshwater ecosystems in Korea, pp. 31–50. Seoul: The Ecological Society of Korea and The Korean Society of Ichthyology.

    Google Scholar 

  • Kim, H.-S., & Hwang, S.-J. (2004). Effects of nutrients and N/P ratio stoichiometry on phytoplankton growth in an eutrophic reservoir. Korean Journal of Limnology, 37(1), 36–46.

    CAS  Google Scholar 

  • Kim, I. S., & Park, J. Y. (2002). Freshwater fish of korea. Seoul: Kyo-Hak.

    Google Scholar 

  • Kim, H.-S., Hwang, S.-J., Shin, J.-K., An, K.-G., & Yoon, C.-G. (2007). Effects of limiting nutrients and N:P ratios on the phytoplankton growth in a shallow hypertrophic reservoir. Hydrobiologia, 581, 255–267.

    Article  CAS  Google Scholar 

  • Kratzer, C. R., & Brezonik, P. L. (1981). A Carlson-type trophic state index for nitrogen in Florida lakes. Water Research Bulletin, 17, 713–715.

    CAS  Google Scholar 

  • Lammens, E. M. R. R. (1988). Trophic interactions in the hypertrophic Lake Tjenke Meere: Top-down and bottom-up effects in relation to hydrology, predation and bioturbation during the period 1974 to 1985. Limnologica, 19, 81–87.

    CAS  Google Scholar 

  • Lammens, E. H. R. R. (1999). The central role of fish in lake restoration and management. Hydrobiologia, 395/396, 191–198.

    Article  CAS  Google Scholar 

  • Lieberman, D. M. (1996). Use of silver carp (Hypophthalmichthys molotrix) and bighead carp (Aristichthys nobillis) for algae control in a small pond: Changes in water quality. Journal of Freshwater Ecology, 11(4), 391–393.

    CAS  Google Scholar 

  • Marker, A. F. H., Crowther, C. A., & Gunn, R. J. M. (1980). Methanol and acetone as solvents for estimating chlorophyll and pheopigments by spectrophotometry. Ergebnisse der Limnologie, 14, 52–69.

    CAS  Google Scholar 

  • Meijer, M. L., Jeppesen, E., van Donk, E., Moss, B., Sceffer, N., Lammens, E., et al. (1994). Long term responses to fish reduction in small shallow lakes: interpretation five year results of four biomanipulation cases in the Netherlands and Denmark. Hydrobiologia, 275/276, 457–464.

    Article  Google Scholar 

  • Meijer, M.-L., DeBoos, I., Scheffer, M., Portielje, R., & Hosper, H. (1999). Biomanipulation in shallow lakes in the Netherlands: An evaluation of 18 case studies. Hydrobiologia, 408/409, 13–30.

    Article  Google Scholar 

  • Miura, T. (1990). The effects of planktivorous fishes on the plankton community in a eutrophic lake. In R. D. Gulati, E. H. R. R. Lammens, M. L. Meijer & E. van Donk (Eds.), Biomanipulation-tool for water management, pp. 567–579. Dordrecht, Belgium: Kluwer Academic.

    Google Scholar 

  • Morris, D. P., & Lewis, W. M. (1988). Phytoplankton nutrient limitation in Colorado mountain lakes. Freshwater Biology, 20(3), 315–327.

    Article  Google Scholar 

  • Moss, B. (1999). Ecological challenges for lake management. Hydrobiologia, 395/396, 3–11.

    Article  Google Scholar 

  • Nurnberg, G. K. (1996). Trophic state of clear and colored, soft- and hard-water lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake Reservoir Management, 12, 432–447.

    Article  CAS  Google Scholar 

  • Onkal-Engin, G., Demir, I., & Engin, S. N. (2005). Determination of the relationship between sewage odour and BOD by neural networks. Environmental Modelling & Software, 20, 843–850.

    Article  Google Scholar 

  • Persson, L., Andersson, G., Hamrin, S. F., & Johansson, L. (1988). Predator regulation and primary production along the productivity gradient of temperate lake ecosystems. In S. R. Carpenter (Ed.), Complex interactions in lake communities, pp. 45–65. New York: Springer.

    Google Scholar 

  • Phillips, N. W. (1984). Compensatory intake can be consistent with an optimal foraging model. The American Naturalist, 123(6), 867–872.

    Article  Google Scholar 

  • Pick, F. R., & Lean, D. R. S. (1987). The role of macronutrients (C, N, P) in controlling cyanobacterial dominance in temperate lakes. New Zealand Journal of Marine and Freshwater research, 21, 425–434.

    Article  CAS  Google Scholar 

  • Pitois, S., Jackson, M. H., & Wood, B. J. B. (2001). Sources of the eutrophication problems associated with toxic algae: An overview. Journal of Environmental Health, 64, 25–32.

    CAS  Google Scholar 

  • Prokopkin, I. G., Gubanov, V. G., & Gladyshev, M. I. (2006). Modelling the effect of planktivorous fish removal in a reservoir on the biomass of cyanobacteria. Ecological Modelling, 190(3–4), 419–431.

    Article  Google Scholar 

  • Quirós, R. (2002). The nitrogen to phosphorus ratio for lakes: A cause or a consequence of aquatic biology? In Cirelli Fernandez & G. Chalar Marquisa (Eds.), El Agua en Iberoamerica: De la Limnologia a la Gestion en Sudamerica, pp. 11–26. Buenos Aires, Argentina: CYTED XVII, Centro de Estudios Transdiciplinarios del Agua, Facultad de Veterinaria, Universidad de Buenos Aires.

    Google Scholar 

  • Rabergh, C. M. I., Bylund, G., & Eriksson, J. E. (1991). Histopathological effects of microcystin-LR, a cyclic peptide toxin from the cyanobacterium (blue-green alga) Microcystis aeruginosa, on common carp. Aquatic Toxicology, 20, 131–146.

    Article  CAS  Google Scholar 

  • Rankin, E. T., & Yoder, C. O. (1999). Adjustments to the index of biotic integrity: A summary of Ohio experiences and some suggested modifications. In T. P. Simon (Ed.), Assessing the sustainability and biological integrity of water resources using fish communities. Boca Raton, FL: CRC.

    Google Scholar 

  • Reynolds, C. S. (1984). The ecology of freshwater phytoplankton. Cambridge: Cambridge University Press.

    Google Scholar 

  • Romare, P., & Bergman, E. (1999). Juvenile fish expansion following biomanipulation and resulting effect on the predation pressure on zooplankton. Hydrobiologia, 404, 89–97.

    Article  Google Scholar 

  • Romo, S., Miracle, M. R., Villens, M.-J., Rueda, J., Ferriol, C., & Vicente, E. (2004). Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate. Freshwater Biology, 49, 1593–1607.

    Article  CAS  Google Scholar 

  • Sanders, R. E., Miltner, R. J., Yoder, C. O., & Rankin, E. T. (1999). The use of external deformities, erosion, lesions, tumors (DELT anomalies) in fish assemblages for characterizing aquatic resources: A case study of seven Ohio streams. In T. P. Simon (Ed.), Assessing the sustainability and biological integrity of water resources using fish communities. Boca Raton, FL: CRC.

    Google Scholar 

  • Schauser, I., Chorus, I., & Heinzmann, B. (2006). Strategy and current status of combating eutrophication in two Berlin Lakes for safeguarding drinking water resources. Water Science & Technology, 54(11–12), 93–100.

    Article  CAS  Google Scholar 

  • Schindler, D. W. (1974). Eutrophication and recovery in experimental lakes: Implications for lake management. Science, 184, 897–899.

    Article  CAS  Google Scholar 

  • Schindler, D. W. (1977). Evolution of phosphorus limitation in lakes. Science, 195, 260–262.

    Article  CAS  Google Scholar 

  • Schindler, D. E., Carpenter, S. R., Cole, J. J., Kitchell, J. F., & Pace, M. L. (1997). Food web structure alters carbon exchange between lakes and the atmosphere. Science, 277, 248–251.

    Article  CAS  Google Scholar 

  • Schwarz, D., Grosch, R., & Gross, W. (2004). Water quality for hydroponics: Nutrients, bacteria and algae in rainwater ponds. Acta Horticulturae, 644, 533–539.

    Google Scholar 

  • Shapiro, J., & Wright, D. I. (1984). Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years. Freshwater biology, 14, 371–383.

    Article  Google Scholar 

  • Smith, V. H. (1983). Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science, 221, 669–671.

    Article  CAS  Google Scholar 

  • Smith, D. W. (1989). The feeding selectivity of silver carp Hypophthalmicthys molitrix Val. Journal of Fish Biology, 34, 819–828.

    Article  Google Scholar 

  • SPSS (2004). SPSS 12.0 KO for Windows. Apache Software Foundation.

  • Starling, F. L. R. M. (1993). Control of eutrophication by silver carp (Hypophthalmichthys molitrix) in the tropical Paranoa Reservoir (Brasilia, Brazil): A mesocosm experiment. Hydrobiologia, 257, 143–152.

    Article  Google Scholar 

  • Starling, F. L. R. M., & Rocha, A. J. A. (1990). Experimental study of the impacts of planktivorous fishes on plankton community and eutrophication of tropical Brazilian reservoir. In R. D. Gulati, E. H. R. R. Lammens, M. L. Meijer & E. van Donk (Eds.), Biomanipulation-tool for water management, pp. 581–591. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Tada, K., Sakai, K., Nakano, Y., Takemura, A., & Montani, S. (2003). Size-fractionated phytoplankton biomass in coral reef waters off Sesoko Island, Okinawa, Japan. Journal of Plankton Research, 25(8), 991–997.

    Article  CAS  Google Scholar 

  • Tong, S. T. Y. (2001). An integrated exploratory approach to examining the relationships of environmental stressors and fish responses. Journal of Aquatic Ecosystem Stress and Recovery, 9, 1–19.

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (U.S. EPA). (1993). Fish field and laboratory methods for evaluating the biological integrity of surface waters. U.S. Environmental Monitoring Systems Laboratory-Cincinnati, Office of Modelling, Monitoring Systems and Quality Assurance, Cincinnati, Ohio 45268, USA. EPA 600-R-92-111.

  • U.S. Environmental Protection Agency (U.S. EPA). (1994). Environmental monitoring and assessment program: Integrated quality assurance project plan for the surface waters resource group, 1994 activities, Rev. 2.00. U.S. Environmental Protection Agency, Las Vegas, NV. EPA 600/X-91/080.

  • U.S. Environmental Protection Agency (U.S. EPA). (1998). Lake and reservoir bioassessment and biocriteria technical guidance document. U.S. Environmental Protection Agency, Office of Water, Washington, D.C. EPA-841-B-98-007.

  • van Donk, E., Gulati, R. D., & Grimm, M. P. (1990). Restoration by biomanipulation in a small hepertrophic lake: First-year results. Hydrobiologia, 191, 285–295.

    Article  Google Scholar 

  • Van Liere, L. (Ed.), (1986). Flushing as a tool to combat eutrophication in L. vuntus (in Dutch). WQL Report 1986-3.

  • Vanni, M. J. (2002). Nutrient cycling by animals in fresh water ecosystems. Annual Review of Ecology and Systematics, 33, 341–370.

    Article  Google Scholar 

  • Vanni, M. J., & Layne, C. D. (1997). Nutrient recycling and herbivory as mechanisms in the ‘top-down’ effect of fish and algae in lakes. Ecology, 78, 21–40.

    Google Scholar 

  • Vollenweider, A. (1976). Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dellIstituto Italino di Idrobiologia (International Journal of Limnology), 33, 53–83.

    CAS  Google Scholar 

  • Wang, H.-J., Liang, X.-M., Jiang, P.-H., Wang, J., Wu, S.-K., & Wang, H.-Z. (2008). TN:TP ratio and planktivorous fish do not affect nutrient-chlorophyll relationships in shallow lakes. Freshwater Biology, 53, 935–944.

    Article  CAS  Google Scholar 

  • Weithman, A. S., & Anderson, R. O. (1976). Angling vulnerability of Esocidae. Proceedings of the Annual Conference of South East Association of Game Fish Commissioners, 30, 99–102.

    Google Scholar 

  • Winemiller, K. O. (1990). Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs, 60, 331–367.

    Article  Google Scholar 

  • Xu, F.-L., Tao, S., & Xu, Z.-R. (1999). The restoration of riparian wetlands and macrophytes in Lake Chao, an eutrophic Chinese lake: Possibilities and effects. Hydrobiologia, 405, 169–178.

    Article  CAS  Google Scholar 

  • Zhang, X., Xie, P., Hao, L., Guo, N., Gong, Y., Hu, X., et al. (2006). Effects of the phytoplanktivorous silver carp (Hypophthalmicthys molitrixon) on plankton and the hepatotoxic microcystins in an enclosure experiment in a eutrophic lake, Lake Shichahai in Beijing. Aquaculture, 257, 173–186.

    Article  Google Scholar 

Download references

Acknowledgment

This research was funded by the project (no. 306009-03-2-CG000) of the Agricultural Technology Development Center, Ministry of Agriculture and Forestry, Korea (Project Title: Development of Water Quality Management Techniques in Agricultural Reservoirs Using Fish Trophic Structure Analysis and Top-down Biomanipulations).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Guk An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, KG., Lee, JY., Kumar, H.K. et al. Control of Algal Scum Using Top-Down Biomanipulation Approaches and Ecosystem Health Assessments for Efficient Reservoir Management. Water Air Soil Pollut 205, 3–24 (2010). https://doi.org/10.1007/s11270-009-0053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0053-5

Keywords

Navigation