Skip to main content
Log in

Optimization of Culture Conditions for the Biodegradation of Lindane by the Polypore Fungus Ganoderma australe

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The bracket-like polypore fungus, Ganoderma australe, was selected for its potential to degrade lindane in liquid agitated sterile cultures. An orthogonal central composite design based on response surface methodology was used to find the optimum biodegradation and biosorption conditions of this pesticide and the growth conditions of the fungus. The factors tested include nitrogen content, initial concentration of lindane, incubation time, and temperature. The optimization parameters investigated were fungus biomass, fungus growth rate, final pH, specific biodegradation, specific biosorption, specific biodegradation rate, biodegraded to biosorbed ratio. The results of the experiments were statistically analyzed and the significance and effect of each factor on responses was assessed. The optimum (maximum) lindane biodegradation (3.11 mg biodegraded lindane per gram biomass) was obtained with nitrogen content of 1.28 g/L, lindane concentration of 7.0 ppm, temperature of 18.0°C, and 5 days of cultivation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants, a review. Process Biochemistry, 40, 997–1026. doi:10.1016/j.procbio.2004.04.008.

    Article  CAS  Google Scholar 

  • Alleman, B. C., Logan, B. E., & Gilbertson, R. L. (1992). Toxicity of pentachlorophenol to six species of white rot fungi as a function of chemical dose. Applied and Environmental Microbiology, 58, 4048–4050.

    CAS  Google Scholar 

  • Dritsa, V., & Rigas, F. (2006). Enhanced ligninolytic activity of selected fungi potentially useful in bioremediation applications. WSEAS Transactions on Environment and Development, 9, 1137–1144.

    Google Scholar 

  • Dritsa, V., Rigas, F., Avramides, E.J., & Hatzianestis, I. (2005). Biodegradation of lindane in liquid cultures by the Polypore fungus Ganoderma australe. Third European Bioremediation Conference, Chania, 4–7 July 2005.

  • Field, J. A., de Jong, E., Costa, G. F., & de Bont, J. A. M. (1993). Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends in Biotechnology, 11, 44–49. doi:10.1016/0167-7799(93)90121-O.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2001). Fungi in bioremediation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hattaka, A. (1994). Lignin-modifying enzymes from selected white rot fungi, production and role in lignin degradation. FEMS Microbiology Reviews, 13, 125–135. doi:10.1111/j.1574-6976.1994.tb00039.x.

    Article  Google Scholar 

  • Laessoe, T. (1998). Mushrooms. London: Dorling Kindersley.

    Google Scholar 

  • Pokhrel, C. P., & Ohga, C. (2007). Submerged culture conditions for mycelial yield and polysaccharides production by Lyophyllum decastes. Food Chemistry, 105, 641–646. doi:10.1016/j.foodchem.2007.04.033.

    Article  CAS  Google Scholar 

  • Rigas F. (1988) Statistical design of experiments and optimization of industrial processes. Athens: NTUA Publ.

  • Rigas, F., & Dritsa, V. (2006a). Fungal remediation of contaminated sites. In A. B. Gore (Ed.), Environmental research at the leading edge (pp. 293–331). New York: Nova Science.

    Google Scholar 

  • Rigas, F., & Dritsa, V. (2006b). Decolourisation of a polymeric dye by selected fungal strains in liquid cultures. Enzyme and Microbial Technology, 39, 120–124. doi:10.1016/j.enzmictec.2005.10.006.

    Article  CAS  Google Scholar 

  • Rigas, F., Marchant, R., Dritsa, V., Kapsanaki-Gotsi, E., Gonou-Zagou, Z., & Avramides, E. J. (2003). Screening of wood rotting fungi potentially useful for the degradation of organic pollutants. Water Air and Soil Pollution Focus, 3, 201–210. doi:10.1023/A:1023994121108.

    Article  CAS  Google Scholar 

  • Rigas, F., Dritsa, V., Marchant, R., Papadopoulou, K., Avramides, E. J., & Hatzianestis, I. (2005). Biodegradation of lindane by Pleurotus ostreatus via central composite design. Environment International, 31, 191–196. doi:10.1016/j.envint.2004.09.024.

    Article  CAS  Google Scholar 

  • Sasek, V., Novothy, C., & Vampola, P. (1998). Screening for efficient organopollutant fungal degraders by decolourisation. Czech Mycology, 50, 303–311.

    Google Scholar 

  • Singh, B. K., & Kuhad, R. C. (2000). Degradation of insecticide lindane (γ-HCH) by white rot fungus Cyathus bulleri and Phanerochaete sordida. Pest Management Science, 56, 142–146. doi:10.1002/1526-4998(200002)56:2<142::AID-PS104>3.0.CO;2-I.

    Article  CAS  Google Scholar 

  • Yang, F. C., Huang, H. C., & Yang, M. J. (2003). The influence of environmental conditions on the mycelial growth of Antrodia cinnamomea in submerged cultures. Enzyme and Microbial Technology, 33, 395–402. doi:10.1016/S0141-0229(03)00136-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project is co-funded by the European Social Fund (75%) and National Resources (25%).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rigas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dritsa, V., Rigas, F., Doulia, D. et al. Optimization of Culture Conditions for the Biodegradation of Lindane by the Polypore Fungus Ganoderma australe . Water Air Soil Pollut 204, 19–27 (2009). https://doi.org/10.1007/s11270-009-0022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0022-z

Keywords

Navigation