Skip to main content
Log in

Characterization of Granulometric and Chemical Composition of Sediments of Barigui River Samples and their Capacity to Retain Polycyclic Aromatic Hydrocarbons

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The presence of polylcyclic aromatic hydrocarbons (PAHs) in surface sediments of Barigui River was investigated. PAHs are considered highly toxic and persistent compounds because of their structure. They originate from incomplete combustion of fossil fuels or biomass. The Barigui River crosses the metropolitan region of Curitiba, and some regions are highly polluted and located near the possible sources of pollution. The results showed that concentrations of total PAHs ranged from 44.6 to 880.2 ng g−1, and the highest values were found at the sites previously investigated and identified as critically polluted. At sites located away from the traffic and possible pollution sources, the total PAHs was lower, 44.6 ng g−1. Due to their hydrophobic character, sediments with high silt and clay content retain greater amounts of PAHs. The granulometric composition of the sediments revealed that most of them are composed basically by silt and clay, and those samples showed high concentration of PAHs. The organic carbon content also confirms this observation. The other sites investigated showed a high capacity to adsorb hydrophobic compounds mainly due to the granulometric composition and organic matter that adsorb poorly water soluble compounds. Finally, we found that the main sources of PAHs are petrogenic; however, at some sites, it is hard to confirm this pattern, and possibly, a mixture of the source would be more appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alves, J. P. H., Passos, E. A. P., & Garcia, C. A. B. (2007). Metals and acid volatile sulfide in sediment cores from the Sergipe River Estuary, Northeast, Brazil. Journal of the Brazilian Chemical Society, 18, 748–758.

    CAS  Google Scholar 

  • Barra, R., Quiroz, R., Saez, K., Araneda, A., Urrutia, R., & Popp, P. (2009). Sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of the Biobio River in south central Chile. Environmental Chemistry Letters (in press). doi:10.1007/s10311-008-0148-z.

  • Baumard, P., Budzinski, H., Michon, Q., Garrigues, P., Burgeot, T., & Bellocq, J. (1998). Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records. Estuarine, Coastal and Shelf Science, 47, 77–90. doi:10.1006/ecss.1998.0337.

    Article  CAS  Google Scholar 

  • Budzinski, H., Bellocq, I. J. J., Pierard, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58, 85–97. doi:10.1016/S0304-4203(97)00028-5.

    Article  CAS  Google Scholar 

  • Butler, J. D., & Crossley, F. (1981). Reactivity of polycyclic aromatic hydrocarbons adsorbed on soot particles. Atmospheric Environment, 15, 91–94. doi:10.1016/0004-6981(81)90129-3.

    Article  CAS  Google Scholar 

  • Caricchia, A. M., Chiavarini, S., & Pezza, M. (1999). Polycyclic aromatic hydrocarbons in the atmospheric particulate matter in the city of Naples Italy. Atmospheric Environment, 33, 3731–3738. doi:10.1016/S1352-2310(99)00199-5.

    Article  CAS  Google Scholar 

  • Cerniglia, C. E., & Heitkamp, M. A. (1989). Microbial degradation of PAH in the aquatic environment. In U. Vanarasi (Ed.), Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment (pp. 41–68). Boca Raton, FL: CRC.

    Google Scholar 

  • Chen, B., Xuan, X., Zhu, L., Wang, J., Gao, Y., Yang, K., et al. (2004). Distribuition of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Research, 38, 3558–3567. doi:10.1016/j.watres.2004.05.013.

    Article  CAS  Google Scholar 

  • Dickhut, R. M., Canuel, E. A., Gustafson, K. E., Liu, K., Arzayus, K. M., Walter, S. E., et al. (2000). Automotive sources of carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the Chesapeake Bay Region. Environmental Science & Technology, 34, 4635–4640. doi:10.1021/es000971e.

    Article  CAS  Google Scholar 

  • Doong, R., & Lin, Y. (2004). Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan. Water Research, 38, 1733–1744. doi:10.1016/j.watres.2003.12.042.

    Article  CAS  Google Scholar 

  • Fasnacht, M. P., & Blough, N. V. (2002). Aqueous photodegradation of polycyclic aromatic hydrocarbons. Environmental Science & Technology, 36, 4364–4369. doi:10.1021/es025603k.

    Article  CAS  Google Scholar 

  • Froehner, S. Maceno, M. (2009). Assessment of bioaccumulation of bifenyls in the trophic chain of a coastal area of Parana, Brazil. Environmental Monitoring and Assessment (in press).

  • Froehner, S., & Martins, R. F. (2008a). Assessment of fate and bioaccumulation of benzo(a)pirene by modeling. Quimica Nova, 31(8), 1089–1093.

    CAS  Google Scholar 

  • Froehner, S., & Martins, R. F. (2008b). Evaluation of the chemical composition of sediments from the Barigüi river in Curitiba, Brazil. Quimica Nova, 31(8), 2020–2026.

    Google Scholar 

  • Froehner, S., Martins, R. F., & Errera, M. R. (2009). Assessment of fecal sterols in Barigui River sediments in Curitiba, Brazil. Environmental Monitoring and Assessment (in press). doi:10.1007/s10661-008-0559-0.

  • Gigliotti, C. L., Brunciak, P. A., Dachs, J., Glenn IV, T. R., Nelson, E. D., Totten, L. A., et al. (2002). Air–water exchange of polycyclic aromatic hydrocarbons in the New York–New Jersey, USA, harbor estuary. Environmental Toxicology and Chemistry, 21, 235–244. doi:10.1897/1551-5028(2002)021<0235:AWEOPA>2.0.CO;2.

    Article  CAS  Google Scholar 

  • Guzzella, L., & DePaolis, A. (1994). Polycyclic aromatic hydrocarbons in sediments of the Adriatic Sea. Marine Pollution Bulletin, 28, 159–165. doi:10.1016/0025-326X(94)90392-1.

    Article  CAS  Google Scholar 

  • Hinga, K. R. (2003). Degradation rates of low molecular weight PAH correlate with sediment TOC in marine subtidal sediments. Marine Pollution Bulletin, 46, 466–474. doi:10.1016/S0025-326X(02)00459-9.

    Article  CAS  Google Scholar 

  • Khillare, P. S., Agarwal, T., & Shridhar, V. (2006). PAHs Contamination in Bank sediment of the Yamuna River, Delhi, India. Environmental Monitoring and Assessment, 123, 151–166. doi:10.1007/s10661-006-9189-6.

    Article  Google Scholar 

  • Kipopoulou, A. M., Manoli, E., & Samara, C. (1999). Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environmental Pollution, 106, 369–380. doi:10.1016/S0269-7491(99)00107-4.

    Article  CAS  Google Scholar 

  • Macleod, M., McKone, T. E., Foster, K., Maddalena, R., Parkenton, T., & Mackay, D. (2004). Applications of contaminant fate and bioaccumulation models in assessing ecological risks of chemicals: a case study for gasoline hydrocarbons. Environmental Science & Technology, 38, 6225–6233. doi:10.1021/es049752+.

    Article  CAS  Google Scholar 

  • Perugini, M., Visciano, P., Giammarino, A., Manera, M., Di Nardo, W., & Amorena, M. (2007). Polycyclic aromatic hydrocarbons in marine organisms from the Adriatic Sea, Italy. Chemosphere, 66, 1904–1910. doi:10.1016/j.chemosphere.2006.07.079.

    Article  CAS  Google Scholar 

  • Peyton, B. M., Viamajala, S., Richards, L. A., & Petersen, J. N. (2007). Solubilization, solution equilibria, and biodegradation of PAH’s under thermophilic conditions. Chemosphere, 66, 1094–1106. doi:10.1016/j.chemosphere.2006.06.059.

    Article  Google Scholar 

  • Ruttenberg, K. C., & Goni, M. A. (1997). Phosphorus distribution, C:N:P ratios, and δ13Coc in artic, temperate, and tropical coastal sediments: tools for characterizing bulk sedimentary organic matter. Marine Geology, 139, 123–145. doi:10.1016/S0025-3227(96)00107-7.

    Article  CAS  Google Scholar 

  • Savinov, V. M., Savinova, T. N., Matishov, G. G., Dahle, S., & Naes, K. (2003). Polycyclic aromatic hydrocarbons (PAHs) and organo-chlorines (OCs) in bottom sediments of the Guba Pechenga, Barents Sea, Russia. The Science of the Total Environment, 306, 39–56. doi:10.1016/S0048-9697(02)00483-7.

    Article  CAS  Google Scholar 

  • Simcik, M. F., Eisenreich, S. J., & Lioy, P. J. (1999). Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric Environment, 33, 5071–5079. doi:10.1016/S1352-2310(99)00233-2.

    Article  CAS  Google Scholar 

  • Sirece, M. A., Marty, J. C., Saliot, A., Aparicio, X., Grimalt, J., & Albaiges, J. (1987). Aliphatic and aromatic hydrocarbonsin different sized aerosols over the Mediterranean Sea: occurrence and origin. Atmospheric Environment, 21, 2247–2259. doi:10.1016/0004-6981(87)90356-8.

    Article  Google Scholar 

  • Sivan, P., Datta, G. C., & Singh, R. R. (2008). Aromatic biomarkers as indicators of source, depositional environment, maturity and secondary migration in the oils of Cambay Basin, India. Organic Geochemistry, 39, 1620–1630. doi:10.1016/j.orggeochem.2008.06.009.

    Article  CAS  Google Scholar 

  • Smith, J. N., & Levy, E. M. (1990). Geochronology of polycyclic aromatic hydrocarbon contamination in sediments of the Saguenay Fjord. Environmental Science & Technology, 24, 874–879. doi:10.1021/es00076a013.

    Article  CAS  Google Scholar 

  • Soclo, H. H., Garrigues, P. H., & Ewald, M. (2000). Origino f polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: Case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, 40, 387–396. doi:10.1016/S0025-326X(99)00200-3.

    Article  CAS  Google Scholar 

  • Subramanian, V., Moturi, O. C. Z., & Rawat, M. (2005). Distribuition and partitioning of phosphorus in solid waste and sediments from drainage canals in the industrial belt of Dheli, India. Chemosphere, 60, 237–244. doi:10.1016/j.chemosphere.2004.11.032.

    Article  Google Scholar 

  • Yang, H. H., Chiang, C. F., Lee, W. J., Hwang, K. P., & Wu, E. M. Y. (1999). Size distribution and dry deposition of road dust PAHs. Environment International, 25, 585–597. doi:10.1016/S0160-4120(99)00036-7.

    Article  CAS  Google Scholar 

  • World Health Organization (WHO). (1998). Selected non-heterocyclic polycyclic aromatic hydrocarbons, Environmental Health Criteria 202, United Nations Environment Programme, International Labour Organization, Geneva. Retrieved September 2008 from http://www.inchem.org/documents/ech/ech202.htm.

  • Toxnet Data Base. (2007). Retrieved August 2008 from http://toxnet.nlm.nih.gov.

  • Viguri, J., Verde, J., & Irabien, A. (2002). Environmental assessment of polycyclic aromatic hydrocarbons (PAH) in surface sediments of the Santander Bay, Northern Spain. Chemosphere, 48, 157–165.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Mr. Luis Carlos Barbosa to help us in the field works. We also thank the Mineral Laboratory Analysis (LAMIR-UFPR) for the granulometric analysis and CNPq for financial support (Grant 409955/2006-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Froehner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Froehner, S., Zeni, J., Cardoso da Luz, E. et al. Characterization of Granulometric and Chemical Composition of Sediments of Barigui River Samples and their Capacity to Retain Polycyclic Aromatic Hydrocarbons. Water Air Soil Pollut 203, 381–389 (2009). https://doi.org/10.1007/s11270-009-0020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0020-1

Keywords

Navigation