Skip to main content
Log in

Isotope Oxygen-18 as Natural Tracer of Water Movement in a Coarse Gravel Unsaturated Zone

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The unsaturated zone of an aquifer serves as a water reservoir which discharges water and eventual pollution to the saturated zone for a relatively long period after the cessation of surface input. Effective protection of a water resource requires detailed knowledge of transport mechanisms through the unsaturated zone with regard to its protective function. The article presents the application of isotope methods in the study of groundwater transport processes in the unsaturated zone of Selniška Dobrava coarse gravel aquifer. Emphasis is given to the use of environmental isotopes as natural tracers in the study of groundwater dynamics in the unsaturated zone. The estimation of groundwater flow characteristics was based on experimental work in lysimeter. Based on long-time isotope investigations with the use of lumped parameter models, some water flow parameters (mean residence time, mean matrix flow velocity) in the unsaturated zone were calculated. The results were compared with tracing experiment results in the same lysimeter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Avak, H., & Brand, W. A. (1995). The finning MAT HDO-equilibration—A fully automated H2O/gas phase equilibration system for hydrogen and oxygen isotope analyses. Thermo electronic corporation. Application News, 11, 1–13.

    Google Scholar 

  • Bayari, C. S. (2002). TRACER: An Excel workbook to calculate mean residence time in groundwater by use of tracer CFC-11, CFC-12 and tritium. Computers & Geosciences, 28(5), 621–630. doi:10.1016/S0098-3004(01)00094-2.

    Article  CAS  Google Scholar 

  • Becker, M. W., & Coplen, T. B. (2001). Use of deuterated water as a conservative artificial groundwater tracer. Hydrogeological Journal, 9, 512–516. doi:10.1007/s100400100157.

    Article  CAS  Google Scholar 

  • Corcho Alvarado, J. A., Purtchert, R., Barbecot, F., Chabault, C., Rüedi, J., Schneider, V., et al. (2004). Tracer transport in the unsaturated zone of the Fontainebleau sands aquifer. Proccedings of the International Workshop on the Application of Isotope Techniques in Hydrological and Environmental Studies, 65, Paris.

  • Leis, A., & Benischke, R. (2004). Comparison of different stable hydrogen isotope-ratio measurement techniques for tracer studies with deuterated water in the unsaturated zone in groundwater. Paper presented at the 7th Workshop of European Society for Isotope Research (ESIR), Berichte des Institutes für Erdwissenschaften Karl-Franzes-UniversitäGraz, Seggauberg, 27 June–1 July 2004.

  • Levenspiel, O. (1962). Mixed models to represent flow of fluids through vessels. Canadian Journal of Chemical Engineering, 8, 135–138.

    Google Scholar 

  • Levenspiel, O. (1999). Chemical reaction engineering (3rd ed.). New York: Wiley.

    Google Scholar 

  • Maciejewski, S., Maloszewski, P., Stumpp, C., & Klotz, D. (2006). Modelling of water flow through typical Bavarian soils (Germany) based on lysimeter experiments: 1. Estimation of hydraulic characteristics of the unsaturated zone. Hydrological Sciences Journal, 51(2), 285–297. doi:10.1623/hysj.51.2.285.

    Article  Google Scholar 

  • Mali, N. (2006). Characterization of transport processes in the unsaturated zone of a gravel aquifer by natural and artificial tracers. Dissertation, University of Nova Gorica, Environmental Sciences Graduate Study Programme. Nova Gorica.

  • Mali, N., & Janža, M. (2005). Ocena možnosti zajema podzemne vode z uporabo MIKE SHE programskega orodja za hidrogeološko modeliranje. Geologija, 48(2), 281–294.

    Google Scholar 

  • Mali, N., Urbanc, J., & Leis, A. (2007). Tracing of water movement through the unsaturated zone of a coarse gravel aquifer by means of dye and deuterated water. Environmental geology, 51(8), 1401–1412. doi:10.1007/s00254-006-0437-4.

    Article  CAS  Google Scholar 

  • Maloszewski, P. (1996). LP models for the interpretation of environmental tracer data. In Manual on mathematical models in isotope hydrology, IAEA-TECDOC-910 (pp. 9–58). Vienna: IAEA.

  • Maloszewski, P., & Zuber, A. (1982). Determining the turnover time of groundwater systems with the aid of environmental tracers—1. Models and their applicability. Journal of Hydrology (Amsterdam), 57, 207–231. doi:10.1016/0022-1694(82)90147-0.

    Article  CAS  Google Scholar 

  • Maloszewski, P., & Zuber, A. (1985). On the theory of tracer experiments in fissured rocks with a porous matrix. Journal of Hydrology (Amsterdam), 79, 333–358. doi:10.1016/0022-1694(85)90064-2.

    Article  CAS  Google Scholar 

  • Maloszewski, P., & Zuber, A. (1996). Lumped parameter models for interpretation of environmental tracer data. In Manual on mathematical models in isotope hydrogeology (pp. 9–58). Vienna: IAEA.

  • Maloszewski, P., Maciejewski, S., Stumpp, C., Stichler, W., Trimborn, P., & Klotz, D. (2006). Modelling of water flow through typical Bavarian soils (Germany) based on lysimeter experiments: 2. Environmental deuterium transport. Hydrological Sciences Journal, 51(2), 298–313. doi:10.1623/hysj.51.2.298.

    Article  Google Scholar 

  • Morrison, J., Brockwell, T., Merren, T., Fourel, F., & Philips, A. M. (2001). On-line high-precision stable hydrogen isotopic analyses on nanoliter water samples. Analytical Chemistry, 73, 3570–3575. doi:10.1021/ac001447t.

    Article  CAS  Google Scholar 

  • Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513–522. doi:10.1029/WR012i003p00513.

    Article  Google Scholar 

  • Nir, A. (1986). Role of tracer methods in hydrology as a source of a physical information. Basic concepts and definitions. Time relationship in dynamics system. IAEA-TECDOC, 381, pp. 7–44. Vienna: IAEA.

  • Nützmann, G., & Stichler, W. (2001). Results from experimental sites—Berlin test site. In ATH (Ed.), Tracers in the unsaturated zone (Investigations 1996–2001). Beiträge zur Hydrogeologie, 52, pp. 19–25.

  • Ozyurt, N. N., & Bayari, C. S. (2003). LUMPED: a Visual Basic code of lumped-parameter models for mean residence time analyses of groundwater system. Computers & Geosciences, 29, 79–90. doi:10.1016/S0098-3004(02)00075-4.

    Article  CAS  Google Scholar 

  • Rank, D., Papesch, W., Rajner, V., Steiner, K. H., & Vargay, Z. (2001). Results from experimental sites—Lysimeter study on infiltration processes in the sandy soil of the Great Hungarian plain. In ATH (Ed.), Tracers in the unsaturated zone (Investigations 1996–2001). Beiträge zur Hydrogeologie, 52, pp. 60–73.

  • Schoen, R., Gaudet, J. P., & Bariac, T. (1999). Preferential flow and solute transport in a large lysimeter, under controlled boundary conditions. Journal of Hydrology (Amsterdam), 215, 70–81. doi:10.1016/S0022-1694(98)00262-5.

    Article  Google Scholar 

  • Seiler, K. P., & Zojer, H. (2001). Role of tracers in the unsaturated zone. In ATH (Ed.) Tracers in the unsaturated zone (Investigations 1996–2001). Beiträge zur Hydrogeologie, 52, pp. 11–15.

  • Trček, B., Veselič, M., & Pezdič, J. (2003). The vulnerability of karst springs—A cave study of the Hubelj spring (SW Slovenia). Materials and Geoenvironment, 50, 385–388.

    Google Scholar 

  • Van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.

    Google Scholar 

  • Zuber, A. (1986a). Mathematical models for the interpretation of environmental radioisotopes in groundwater system. In P. Fritz, & J. C. Fontes (Eds.), Handbook of environmental isotope geochemistry (pp. 1–59). Amsterdam: Elsevier.

    Google Scholar 

  • Zuber, A. (1986b). On the interpretation of tracer data in variable flow system. Journal of Hydrology (Amsterdam), 86(1–2), 45–57. doi:10.1016/0022-1694(86)90005-3.

    Article  Google Scholar 

  • Zuber, A., & Maloszewski, P. (2000). Lumped parameter models. In W. G. Mook, & Y. Yurtsever (Eds.),Environmental isotopes in the hydrological cycle—Principle and applications. Volume VI: Modelling (pp. 5–35). Vienna: IAEA.

    Google Scholar 

Download references

Acknowledgement

The study presented in the paper was carried out within the project Urban Hydrogeology—The impact of Infrastructures on Groundwater (L-1-6670-0215) and the research programme Groundwater and Geochemistry (P-1-0020-0215) financed by Ministry of Higher Education, Science and Technology of Republic Slovenia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Mali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mali, N., Urbanc, J. Isotope Oxygen-18 as Natural Tracer of Water Movement in a Coarse Gravel Unsaturated Zone. Water Air Soil Pollut 203, 291–303 (2009). https://doi.org/10.1007/s11270-009-0012-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0012-1

Keywords

Navigation