Skip to main content

Advertisement

Log in

A Modeling Approach to Water Quality Management of an Agriculturally Dominated Watershed, Kansas, USA

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Impairment of water quality is a major concern for streams and rivers in the central USA. Total maximum daily loads (TMDLs) establish a watershed framework and set management targets to alleviate pollution from both point and nonpoint sources. For this study, we have used a hydrologic modeling approach to holistically examine the effect of land use management, urban development, and agricultural practices on sediment and nutrient loadings in an agricultural watershed. Annualized Agricultural Nonpoint Source (AnnAGNPS) simulation indicates that while point source dischargers contribute 8% of total nitrogen (TN) and 24% of total phosphorus (TP) loadings to the Marmaton River, agricultural nonpoint sources are the leading pollution source contributing 55% of TN and 49% of TP loading. Based on TMDL analysis and model simulation, 3% of the watershed area (3,244 ha) needs to be targeted to control TN loading whereas 1% of the total area (1,319 ha) is required for TP reduction management. Managing the TN areas alone can achieve a 57% reduction in the TP load required for the TMDL, whereas managing the targeted TP areas can only provide 30% of the required TN reduction. Areas required both TN and TP management comprise 469 ha. Targeting these areas can achieve approximately 22% of the required TN reduction and 29% of the required TP reduction. Overall, 4,094 ha will require management to achieve water quality goals. This study demonstrates that a modeling approach is needed to effectively address TMDL issues and help identify targeted areas for management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andreen, W. L. (2004). Water quality today—has the clean water act been a success? Alabama Law Review, 55, 537–593.

    Google Scholar 

  • Arruda, J.A. (1993). Bourbon County small lakes modeling project. Final report to the Kansas Department of Health and Environment, Pittsburg State University. 30 pp.

  • Benaman, J., Ward, G. H., Maidment, D. R., & Sauders, W. K. (2000). A critical assessment of water quality and watershed models for the Texas total maximum daily load process. In Proceedings of the Water Environment Federation, Watershed 2000 (pp. 785–812).

  • Benham, B., Zeckoski, R., Yagow, G., & Ekka, S. (2006). TMDL implementation–Characteristics of successful projects. Center for TMDL and Watershed Studies, Virginia Tech, Blacksburg, VA. VT-BSE Document No 2006-0003. 370 pp.

  • Bennett, E. M., Carpenter, S. R., & Caraco, N. E. (2001). Human impact on erodable phosphorus and eutrophication: A global perspective. Bioscience, 51(3), 227–234. doi:10.1641/0006-3568(2001)051[0227:HIOEPA]2.0.CO;2.

    Article  Google Scholar 

  • Bilotta, G. S., Brazier, R. E., Haygarth, P. M., Macleod, C. J. A., Butler, P., Granger, S., et al. (2008). Rethinking the contribution of drained and undrained grasslands to sediment-related water quality problems. Journal of Environmental Quality, 37, 906–914. doi:10.2134/jeq2007.0457.

    Article  CAS  Google Scholar 

  • Burkholder, J., Libra, B., Weyer, P., Heathcote, S., Kolpin, D., Thorne, P. S., et al. (2007). Impacts of waste from concentrated animal feeding operations on water quality. Environmental Health Perspectives, 115, 308–312.

    CAS  Google Scholar 

  • Bingner, R. L., Theurer, F. D., & Yuan, Y. (2007). AnnAGNPS technical processes. Model version 4.0. USDA-ARS. Oxford, MS: National Sedimentation Laboratory.

    Google Scholar 

  • Borah, D. K., & Bera, M. (2003). Watershed-scale hydrologic and nonpoint source pollution models: Review of mathematical bases. Transactions of the ASAE. American Society of Agricultural Engineers, 46(3), 1553–1566.

    Google Scholar 

  • Bosch, D., Theurer, F. D., Bingner, R. L., Felton, G., & Chaubey, I. (1998). Evaluation of the AnnAGNPS water quality model. ASAE paper no. 98-2195. St. Joseph, Michigan.

  • Boyd, J. (2000). Unleashing the clean water act: The promise and challenge of the TMDL approach to water quality. Resources, 139, 7–10.

    Google Scholar 

  • Carpenter, S. (2005). Eutrophication of aquatic ecosystems: Bistability and soil phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 102(29), 10002–10005. doi:10.1073/pnas.0503959102.

    Article  CAS  Google Scholar 

  • Carpenter, S., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. J. Ecological Applications, 3, 559–568. doi:10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2.

    Article  Google Scholar 

  • Chapman, S. S., Omernik, J. M., Freeouf, J. A., Huggins, D. G., McCauley, J. R., & Freeman, C. C. (2001). Ecoregions of Nebraska and Kansas. Reston, Virginia: U.S. Geological Survey.

    Google Scholar 

  • Das, S., Rudra, R. P., Gharabaghi, B., Goel, P. K., Singh, A., & Ahmed, I. (2007). Comparing the performance of SWAT and AnnAGNPS model in a watershed in Ontario. In Proceedings of the ASABE fourth conference on watershed management to meet water quality standards and TMDLs. Publication no: 701P0207. San Antonio, Texas. March 10–14, 2007.

  • Das, S., Rudra, R. P., Gharabaghi, B., Gebremeskel, S., Goel, P. K., & Dickinson, W. T. (2008). Applicability of AnnAGNPS for Ontario conditions. Canadian Biosystems Engineering, 50, 1.1–1.11.

    Google Scholar 

  • Dodds, W. K., & Oakes, R. M. (2008). Headwater influences on downstream water quality. Environmental Management, 41(3), 367–377. doi:10.1007/s00267-007-9033-y.

    Article  Google Scholar 

  • Donigian, A. S. Jr. (2002). Watershed model calibration and validation: The HSPF experience. In Proceedings of the WEF National TMDL Science and Policy Conference, Phoenix, AZ. November 13–16, 2002.

  • Emmert, B., & Hase, K. (2001). Geographic assessment and classification of Kansas riparian systems (p. 166). Topeka, KS: KWO.

    Google Scholar 

  • Evans, B. M., Lehning, D. W., Corradini, K. J., Petersen, G. W., Nizeyimana, E., Hamlett, J. M., et al. (2002). A comprehensive GIS-based modeling approach for predicting nutrient loads in watersheds. Journal of Spatial Hydrology, 2(2), 1–18.

    Google Scholar 

  • Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The soil and water assessment tool: Historical development, application, and future research directions. Transactions of the ASAE. American Society of Agricultural Engineers, 50(4), 1211–1250.

    CAS  Google Scholar 

  • Gordon, L. M., Bennett, S. J., Bingner, R. L., Theurer, F. D., & Alonso, C. V. (2007). Simulating ephemeral gully erosion in AnnAGNPS. Transactions of the ASAE. American Society of Agricultural Engineers, 50(3), 857–866.

    Google Scholar 

  • Heimann, D. C., Licher, S. S., & Schalk, G. K. (2007). Effects of impoundments and land-cover changes on streamflows and selected fish habitat in the Upper Osage River Basin, Missouri and Kansas. U.S. Geological Survey, Scientific Investigation Report 2007-5175. 96 p. plus CD.

  • Kansas Department of Health and Environment (KDHE) (2001a). Marais des Cygnes Basin TMDL: Marmaton River—water quality impairment: Nutrients and oxygen demand impact on aquatic life (p. 20). Topeka, KS: Watershed Planning and TMDLs, BOW, KDHE.

    Google Scholar 

  • Kansas Department of Health and Environment (KDHE) (2001b). Marais des Cygnes Basin TMDL: Marmaton River—water quality impairment: Dissolved oxygen (p. 18). Topeka, KS: Watershed Planning and TMDLs, BOW, KDHE.

    Google Scholar 

  • Kansas Department of Health and Environment (KDHE) (2008). Marais des Cygnes Basin Lake Protection Plan: Cedar Creek Lake—water quality issue: Eutrophication (p. 32). Topeka, KS: Watershed Planning and TMDLs, BOW, KDHE.

    Google Scholar 

  • Kansas Water Office (KWO) (2003). Kansas water plan: Marais des Cygnes Basin Section (p. 21). Topeka, KS: KWO.

    Google Scholar 

  • Mankin, K. R., & Kalita, P. K. (2000). Horseshoe Creek watershed water quality assessment. Final report. KDHE contract NPS 97-149, Bureau of Water, KDHE, Topeka, KS.

  • Mankin, K. R., & Koelliker, J. K. (2001). Clinton Lake water quality assessment project. Final Report. KDHE contract NPS 98-059, Bureau of Water, KDHE. Topeka, KS.

  • Mankin, K. R., Wang, S. H., Koelliker, J. K., Huggins, D. G., & deNoyelles, F. Jr. (2003). Watershed-lake quality modeling: verification and application. Journal of Soil and Water Conservation, 58(4), 188–197.

    Google Scholar 

  • Mankin, K. R., Tuppad, P., Devlin, D. L., & McVay, K. A. (2005). Strategic targeting of watershed management using water quality modeling. Transactions on Ecology and the Environment, 83, 327–337.

    Google Scholar 

  • McKenzie, C. M. (2006). Making an impact: The watershed approach. Small Flows Quarterly, 7(Fall Issue), 11–16.

    Google Scholar 

  • Meals, D. W., Cassell, E. A., Hughell, D., Wood, L., & Jokela, W. E. (2008). Dynamic spatially explicit mass-balances modeling for targeted watershed phosphorus management: II Modeling application. Agriculture Ecosystems & Environment, 127(3–4), 223–233. doi:10.1016/j.agee.2008.04.005.

    Article  CAS  Google Scholar 

  • Missouri Department of Conservation (MDC) (2008). West Osage Watershed. Information available on Web, access in September, 2008, at http://mdc.mo.gov/fish/watershed/wosage/hydro/.

  • Mitsch, W. J., & Gosselink, J. G. (2000). The values of wetlands: importance of scale and landscape setting. Ecological Economics, 35(1), 25–33. doi:10.1016/S0921-8009(00)00165-8.

    Article  Google Scholar 

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASAE. American Society of Agricultural Engineers, 50(3), 885–900.

    Google Scholar 

  • National Research Council (NRC) (2001). Assessing the TMDL approach to water quality management (p. 122). Washington, DC: The National Academies.

    Google Scholar 

  • Natural Resources Conservation Service (NRCS) (1986). TR-55: Urban hydrology for small watersheds. Washington, DC: USDA, NRCS.

    Google Scholar 

  • Nejadhashemi, A. P., & Mankin, K. R. (2007). Comparison of four water quality models (STEPL, PLOAD, L-THIA, and AVSWAT-X) in simulating sediment and nutrient dynamics in a watershed. Minneapolis, MN: ASABE Annual International Meeting. Paper no: 072211. June 17–20.

  • Parsons, J., Thomas, D. L., & Huffman, R. L. (2004). Agricultural nonpoint source water quality models: Their use and application (p. 195). Raleigh, NC: North Carolina State University, Southern Cooperative Series Bulletin no. 398.

    Google Scholar 

  • Polyakov, V., Fares, A., Kubo, D., Jacobi, J., & Smith, C. (2007). Evaluation of a nonpoint source pollution model, AnnAGNPS, in a tropical watershed. Environmental Modelling & Software, 22(11), 1617–1627. doi:10.1016/j.envsoft.2006.12.001.

    Article  Google Scholar 

  • Santhi, C., Srinivasan, R., Arnold, J. G., & Williams, J. R. (2006). A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas. Environmental Modelling & Software, 21(8), 1141–1157. doi:10.1016/j.envsoft.2005.05.013.

    Article  Google Scholar 

  • Selman, M., Greenhalgh, S., Diaz, R., & Sugg, Z. Z. (2008). Eutrophication and hypoxia in coastal areas: A global assessment of the state of knowledge (p. 6). Washington, DC: Water Resources Institute.

    Google Scholar 

  • Sharpley, A. N., Daniel, T., Sims, T., Lemunyon, J., Stevens, R., & Parry, R. (2003). Agricultural phosphorus and eutrophication (2nd ed., p. 44). Washington, DC: U.S. Department of Agriculture, Agricultural Research Service, Publication no. ARS-149.

    Google Scholar 

  • Shoemaker, L., Dai, T., & Koenig, J. (2005). TMDL model evaluation and research needs. EPA-600-R-05-149. Cincinnati, OH: National Risk Management Research Laboratory, Office of Research and Development, USEPA.

    Google Scholar 

  • Shrestha, S., Babel, M. S., Das Gupta, A., & Kazama, F. (2006). Evaluation of annualized agricultural nonpoint source pollution model for a watershed in the Siwalik Hills of Nepal. Environmental Modelling & Software, 21(7), 961–975. doi:10.1016/j.envsoft.2005.04.007.

    Article  Google Scholar 

  • Skei, J., Larsson, P., Rosenberg, R., Jonsson, P., Olsson, M., & Broman, D. (2000). Eutrophication and contaminants in aquatic ecosystems. Ambio, 29(4), 184–194. doi:10.1639/0044-7447(2000)029[0184:EACIAE]2.0.CO;2.

    Google Scholar 

  • Smith, V. H. (2003). Eutrophication of freshwater and marine ecosystems: A global problem. Environmental Science and Pollution Research, 10(2), 126–139. doi:10.1065/espr2002.12.142.

    Article  CAS  Google Scholar 

  • Sloto, R.A., & Crouse, M.Y. (1996). HYSEP—a computer program for streamflow hydrograph separation and analysis. U.S. Geological Survey Water-Resources Investigations report 96-4040. 46 pp.

  • Udawatta, R. P., Motavalli, P. P., & Garrett, H. E. (2004). Phosphorus loss and runoff characteristics in three adjacent agricultural watersheds with claypan soils. Journal of Environmental Quality, 33, 1709–1719.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (1991). Guidance for water quality-based decisions: The TMDL process. EPA-440-4-91-001. Washington, DC: Water of Office, USEPA.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (1996). Nonpoint source pollution: The nation’s largest water quality problem. EPA-841-F-96-004A. Washington, DC: Water of Office, USEPA.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (1997). Compendium of tools for watershed assessment and TMDL development. EPA-841-B-97-006. Washington DC: Water of Office, USEPA.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (1999). Protocol for developing nutrient TMDLs. EPA-841-B-99-007. Washington DC: Water of Office, USEPA.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (2003). Evaluation of sediment transport models and comparative application of two watershed models. EPA-600-R-03-139. Cincinnati, OH: National Risk Management Research Laboratory, Office of Research and Development, USEPA.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (2007a). National water quality inventory: 2002 report. EPA-841-R-07-001. Washington, DC: Water of Office, USEPA.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (2007b). An approach for using load duration curves in the development of TMDLs. EPA-841-B-07-006. Washington, DC: Water of Office, USEPA.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (2008). Handbook for developing watershed plans to restore and protect our waters. EPA-841-B-08-002. Washington, DC: Water of Office, USEPA.

    Google Scholar 

  • Vasconcelos, J. T., Tedeschi, L. O., Fox, D. G., Galyean, M. L., & Greene, L. W. (2007). Review: Feeding nitrogen and phosphorus in beef cattle feedlot production to mitigate environmental impacts. The Professional Animal Scientist, 23, 8–17.

    Google Scholar 

  • Wang, S. H., Huggins, D. G., Frees, L., Volkman, C. G., Lim, N. C., Baker, D. S., et al. (2005). An integrated modeling approach to total watershed management: water quality and watershed management of Cheney Reservoir, Kansas, USA. Water, Air, and Soil Pollution, 164(1–4), 1–19. doi:10.1007/s11270-005-1658-y.

    Article  CAS  Google Scholar 

  • Yuan, Y., Bingner, R. L., & Rebich, R. A. (2001). Evaluation of AnnAGNPS on Mississippi Delta MSEA watersheds. Transactions of the ASAE. American Society of Agricultural Engineers, 44(5), 1183–1190.

    Google Scholar 

  • Yuan, Y., Bingner, R. L., & Boydstun, J. (2006). Development of TMDL watershed implementation plan using annualized ANGPS. Land Use and Water Resources Research, 6, 2.1–2.8.

    Google Scholar 

Download references

Acknowledgments

The work described in this study was part of a broader TMDL effort for the Marais des Cygnes Basin. We gratefully acknowledge contributions made by field crews and technical staff from the Bureau of Environmental Field Services, KDHE, particularly as related to water quality monitoring, data support, and quality control and assurance of water quality data. We also thank Drs. Fred Theurer and Xingong Li for their technical assistance and valuable modeling suggestions. In addition, we appreciate helpful comments from two anonymous reviewers, which have greatly improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Stiles, T., Flynn, T. et al. A Modeling Approach to Water Quality Management of an Agriculturally Dominated Watershed, Kansas, USA. Water Air Soil Pollut 203, 193–206 (2009). https://doi.org/10.1007/s11270-009-0003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0003-2

Keywords

Navigation