Skip to main content

Advertisement

Log in

Polycyclic Aromatic Hydrocarbons in Intertidal Marine Bivalves of Sunderban Mangrove Wetland, India: An Approach to Bioindicator Species

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The paper presents the first comprehensive account of congener profiles of polycyclic aromatic hydrocarbons (PAHs) in intertidal bivalve mollusks [Meretrix meretrix, Macoma birmanica, and Sanguilonaria (Soletellina) acuminata] of Sunderban mangrove wetland (India). The main aim of this work was to use the bivalves as bioindicators of the contamination of the 16 USEPA PAH. The PAH profile in bivalves is largely dominated by a petrogenic fingerprint, with over-imposition of pyrolytic PAH sources, as evidenced by diagnostic molecular ratios. Bioaccumulation factors (BAF) of individual compounds from the sediments were calculated, and it reveals overall higher values in the visceral mass of the bivalves. S acuminata showed significantly higher levels of PAHs, especially the high molecular weight (HMW) PAHs, compared to the other two species as a sensitive indicator of trace organic stress in future monitoring programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Baojun, T., Baozhong, L., Hongsheng, Y., & Jianhai, X. (2005). Oxygen consumption and ammonia-N excretion of Meretrix meretrix in different temperature and salinity. Chinese Journal of Oceanology and Limnology, 23(4), 469–474. doi:10.1007/BF02842693.

    Article  Google Scholar 

  • Bartolomé, L., Cortazar, E., Rapsos, J. C., Usobiaga, A., Zuloaga, O., Etxebarria, N., et al. (2005). Simultaneous microwave-assisted extraction of polycylic aromatic hydrocarbons, polychlorinated biphenyls, phthalate esters and nonylphenols in sediments. Journal of Chromatography. A, 1068, 229–236. doi:10.1016/j.chroma.2005.02.003.

    Article  CAS  Google Scholar 

  • Baumard, P., Budzinski, H., & Garrigues, P. (1998). Concentrations of PAHs (Polycyclic Aromatic Hydrocarbons) in various marine organisms in relation to those in sediments and two trophic level. Marine Pollution Bulletin, 36, 951–960. doi:10.1016/S0025-326X(98)00088-5.

    Article  CAS  Google Scholar 

  • Baumard, P., Budzinski, H., Garrigues, P., Narbonne, J. F., Burgeot, T., Michel, X., et al. (1999). Polycyclic aromatic hydrocarbon (PAH) burden of mussels (Mytilus sp) in different marine environments in relation with sediment PAH contamination and bioavailability: Detection of a pollution gradient in Tolo harbor; Hong Kong. Marine Environmental Research, 47, 415–439. doi:10.1016/S0141-1136(98)00128-7.

    Article  CAS  Google Scholar 

  • Benner, B. A., Gordon, G. E., & Wise, S. A. (1989). Mobile sources of atmospheric polycyclic aromatic hydrocarbons: a roadway tunnel study. Environmental Science & Technology, 23, 1269–1278. doi:10.1021/es00068a014.

    Article  CAS  Google Scholar 

  • Benner, B. A., Bryner, N. P., Wise, S. A., Mulholland, G. H., Lao, R. C., & Fingas, M. F. (1990). Polycyclic aromatic hydrocarbons emissions from combustion of crude oil on water. Environmental Science & Technology, 24, 1418–1427. doi:10.1021/es00079a018.

    Article  CAS  Google Scholar 

  • Besada, V., Fumega, J., & Vaamonde, A. (2002). Temporal trends of Cd, Cu, Hg, Pb and Zn in mussel (Mytilus galloprovincialis) from the Spanish North-Atlantic coast 1991–1999. The Science of the Total Environment, 288, 239–253. doi:10.1016/S0048-9697(01)01010-5.

    Article  CAS  Google Scholar 

  • Bhattacharya, A. (1993). Backwash-and-swash-oriented current crescents: indicators of beach slope, current direction and environment. Sedimentary Geology, 84, 139–148. doi:10.1016/0037-0738(93)90051-6.

    Article  Google Scholar 

  • Bhattacharya, A., & Sarkar, S. K. (2003). Impact of over exploitation of shellfish: northeastern coast of India. Ambio, 32(1), 70–75. doi:10.1639/0044-7447(2003)032[0070:IOOOSN]2.0.CO;2.

    Google Scholar 

  • Binelli, A., Sarkar, S. K., Chatterjee, M., Riva, C., Parolini, M., Bhattacharya, B. D., et al. (2007). Concentration of polybrominated diphenyl ethers (PBDEs) in sediment cores of Sundarban mangrove wetland, northeastern part of Bay of Bengal (India). Marine Pollution Bulletin, 54, 1220–1229. doi:10.1016/j.marpolbul.2007.03.021.

    Article  CAS  Google Scholar 

  • Binelli, A., Sarkar, S. K., Chatterjee, M., Riva, C., Parolini, M., Bhattacharya, B. D., et al. (2008). A comparison of sediment quality guidelines for toxicity assessment in the Sunderban wetlands (Bay of Bengal, India). Chemosphere, 73, 1129–1137. doi:10.1016/j. Chemosphere.2008.07.019.

    Article  CAS  Google Scholar 

  • Brix, H., & Lyngby, S. E. (1985). The influence of size upon the concentration of Cd, Cr, Cu, Hg, Pb and Zn in the common mussel (Mytilus edulis (L.). In: J. Salinski (Ed) Heavy metals in water organisms. Symposia Biologica Hungarica 29, Budapest.

  • Budzinski, H., Jones, I., Bellocq, J., Pierard, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58, 85–97. doi:10.1016/S0304-4203(97)00028-5.

    Article  CAS  Google Scholar 

  • Canuel, E. A., & Martens, C. S. (1993). Seasonal variability in the sources and alteration of organic matter associated with recently deposited sediments. Organic Geochemistry, 20(5), 563–577. doi:10.1016/0146-6380(93)90024-6.

    Article  CAS  Google Scholar 

  • Chatterjee, M., Silva-Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., Satpathy, K. K., et al. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International, 33, 346–356. doi:10.1016/j.envint.2006.11.013.

    Article  CAS  Google Scholar 

  • Chatterjee, M., Canario, J., Sarkar, S. K., Brancho, V., Bhattacharya, A. K., & Saha, S. (2008). Mercury enrichments in core sediments in Sunderban mangroves, northeastern part of Bay of Bengal and their ecotoxicological significance. Environmental Geology, Springer Publishers, UK (in press). doi:10.1007/s00254-008-1404-z.

  • Claisse, D., Joanny, M., & Quintin, J. Y. (1992). Le reseau national d’observation de la qualite du milieu marin (RNO). Analusis, 20, M19–M22.

    CAS  Google Scholar 

  • Cossa, D. (1989). A review of the Mytilus spp. as a quantitative indicator of cadmium and mercury contamination in coastal waters. Oceanologica Acta, 12, 417–432.

    CAS  Google Scholar 

  • Crals, M. G., Marty, G. D., & Hose, J. E. (2002). Synthesis of the toxicological impacts of the Exxon Valdez oil spill on Pacific herring (Clupea pallasi) in Prince William Sound; Alaska: USA. Canadian Journal of Fisheries and Aquatic Sciences, 59, 153–172. doi:10.1139/f01-200.

    Article  Google Scholar 

  • Dame, R. F. (1996). Ecology of marine bivalves: An ecosystem approach p. 254. New York: CRC Press.

    Google Scholar 

  • Farrington, J. W., Goldberg, E. D., Risegrough, R. W., Martin, J. H., & Bowen, V. T. (1983). An overview of trace metal, DDE, PCB, hydrocarbon and artificial radionuclide data. Environmental Science & Technology, 17, 490–496. doi:10.1021/es00114a010.

    Article  CAS  Google Scholar 

  • Folk, R. L., & Ward, W. C. (1957). Brazos River bar, a study of the significance of grain size parameters. Journal of Sedimentary Petrology, 27, 3–26.

    Google Scholar 

  • Foster, P., & Chacko, J. (1995). Minor and trace elements in the Shell of Patella vulgata (L.). Marine Environmental Research, 40(1), 55–76. doi:10.1016/0141-1136(94)00005-A.

    Article  CAS  Google Scholar 

  • Foster, G. D., & Wright, D. A. (1988). Unsubstituted polynuclear aromatic hydrocarbons in sediments, clams, and clam worms from Chesapeake Bay. Marine Pollution Bulletin, 19, 459. doi:10.1016/0025-326X(88)90402-X.

    Article  CAS  Google Scholar 

  • Fourie, H. O., & Peisach, M. (1977). Loss of trace elements during dehydration of marine zoological material. Analyst (London), 102, 193–200. doi:10.1039/an9770200193.

    Article  CAS  Google Scholar 

  • Francioni, E., Wagener, A., Scofield, A., & Cavalier, B. (2005). Biomonitoring of polycyclic aromatic hydrocarbon in Perna perna from Guanabara Bay, Brazil. Environmental Forensics, 6, 361–370. doi:10.1080/15275920500351759.

    Article  CAS  Google Scholar 

  • Francioni, E., Wagener, A., de L. R. Scofield, A., de L. Depledge, M. H., Cavalier, B., Sette, C. B., et al. (2007). Polycyclic aromatic hydrocarbons in inter-tidal mussel Perna perna: Space-time observations, source investigation and genotoxicity. The Science of the Total Environment, 372, 515–531. doi:10.1016/j.scitotenv.2006.08.046.

    Article  CAS  Google Scholar 

  • Fung, C. N., Lam, J. C. W., Zheng, G. J., Connell, D. W., Monirith, I., Tanabe, S., et al. (2004). Mussel-based monitoring of trace metal and organic contaminants along the east coast of China using Perna viridis and Mytilus edulis. Environmental Pollution, 127(2), 203–216.

    CAS  Google Scholar 

  • Guinan, J., Charlesworth, M., Service, M., & Oliver, T. (2001). Sources and geochemical constraints of polycyclic aromatic hydrocarbons (PAHs) in sediments and mussels of two northern Irish Sea-Loughs. Marine Pollution Bulletin, 42(11), 1073–1081. doi:10.1016/S0025-326X(01)00077-7.

    Article  CAS  Google Scholar 

  • Guzzella, L., Vigano, L., Sarkar, S. K., Saha, M., & Bhattacharya, A. (2005). Distribution of HCH., DDT, HCB and PAH in the sediments of coastal environments of West Bengal, northeast part of India. Environment International, 31, 523–534. doi:10.1016/j.envint.2004.10.014.

    Article  CAS  Google Scholar 

  • Hickey, C. W., Roper, D. S., Holland, P. T., & Trower, T. M. (1995). Accumulation of organic contaminants in two sediment-dwelling shellfish with contrasting feeding modes: deposit (Macoma liliana) and filter-feeding (Austravenus strutchburyi). Archives of Environmental Contamination and Toxicology, 29, 221–231. doi:10.1007/BF00212973.

    Article  CAS  Google Scholar 

  • Jacob, J., Grimmer, G., & Hidelbrandt, A. (1997). Long term decline of atmospheric and marine pollution by polycyclic aromatic hydrocarbons (PAH) in Germany. Chemosphere, 34, 2099–2108. doi:10.1016/S0045-6535(97)00070-2.

    Article  CAS  Google Scholar 

  • Kennish, M. J. (1997). Estuarine and marine pollution. CRC Press, pp. 524.

  • Knezovich, J. P., Harrison, F. L., & Wilhelm, R. G. (1987). The bioavailability of sediment-sorbed organic chemicals: a review. Water, Air, and Soil Pollution, 32, 233–245. doi:10.1007/BF00227696.

    Article  CAS  Google Scholar 

  • Krumbein, W. C., & Pettijohn, F. J. (1938). Manual of sediment petrology p. 549. New York: Plenum.

    Google Scholar 

  • Lake, J. L., Rubinstein, N. I., Lee, H., & Lake, C. A. (1990). Heltshe JH, Pavignano S. Equilibrium partitioning and bioaccumulation of sediment-associated contaminants by infaunal organisms. Environmental Contamination and Toxicology, 9, 1095–1106. doi:10.1897/1552-8618(1990)9[1095:EPABOS]2.0.CO;2.

    Article  CAS  Google Scholar 

  • Law, R. J., Kelly, C. A., & Nicholson, M. D. (1999). Polycyclic aromatic hydrocarbons (PAHs) in shellfish affected by the Sea Empress oil spill in Wales in 1996. Polycyclic Aromatic Compounds, 17, 229–239.

    Article  CAS  Google Scholar 

  • Lehr, R. E., & Jerima, D. M. (1977). Metabolic activations of polycyclic hydrocarbons. Archives of Environmental Contamination and Toxicology, 39, 1–6.

    CAS  Google Scholar 

  • Liao, J. F. (1990). The chemical properties of the mangrove Solonchak in the northeast part of Hainan Island. The Acta Scientiarum Naturalium Universities Sunyatseni. (Supp), 9(4), 67–72.

    Google Scholar 

  • Long, E. R., MacDonald, D. D., Smith, S. C., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19(1), 81–97. doi:10.1007/BF02472006.

    Article  Google Scholar 

  • McElory, A. E., Farrington, J. W., & Teal, J. M. (1989). Bioavailability of polycyclic aromatic hydrocarbons in aquatic environment. In U. Varanasi (Ed.), Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment (pp. 1–40). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Moody, I. R., & Lindstrom, R. M. (1977). Selection and cleaning of plastic containers for storage of trace element samples. Analytical Chemistry, 49, 2264–2267. doi:10.1021/ac50022a039.

    Article  CAS  Google Scholar 

  • Muel, B., & Saguem, S. (1985). Determination of 23 polycyclic aromatic hydrocarbons in atmospheric particulate matter of the Paris area and photolysis by the sunlight. Environmental Science & Technology, 19, 111–131.

    CAS  Google Scholar 

  • NAS (National Academy of Sciences).The International Mussel Watch. (1980). Washington DC.

  • Navarro, P., Cortazar, E., Bartolomé, L., Deusto, M., Raposo, J. C., Zuloaga, O., et al. (2006). Comparison of solid phase extraction, saponification and gel permeation chromatography for the clean-up of microwave-assisted biological extracts in the análysis of polycylic aromatic hydrocarbons. Journal of Chromatography. A, 1128, 10–16. doi:10.1016/j.chroma.2006.06.063.

    Article  CAS  Google Scholar 

  • Neff, J. M. (1979). In Polycyclic aromatic hydrocarbons in the aquatic environment. Sources, fates and biological effects (pp. 1–262). Barking UK: Applied Science Publishers.

  • O’Connor, T. P. (1996). Trends in chemical concentrations in mussels and oysters collected along the US coasts from 1986 to 1993. Marine Environmental Research, 41, 183–200. doi:10.1016/0141-1136(95)00011-9.

    Article  Google Scholar 

  • Pereira, W. E., Domagalski, J. L., Hostetler, F. D., Brown, L. R., & Rapp, J. B. (1996). Occurrence and accumulation of pesticides and organic contaminants in river sediment, water and clam tissues from the San Joaquim river and tributaries, California. Environmental Toxicology and Chemistry, 15, 172–180. doi:10.1897/1551-5028(1996)015<0172:OAAOPA>2.3.CO;2.

    Article  CAS  Google Scholar 

  • Prahl, F. G., & Carpenter, R. (1983). Polycyclic aromatic hydrocarbon (PAH)—phase associations in Washington coastal sediment. Geochimica et Cosmochimica Acta, 47, 1013–1023. doi:10.1016/0016-7037(83)90231-4.

    Article  CAS  Google Scholar 

  • Pringle, B. H., Hissong, D. E., Katley, E. L., & Mulawka, S. T. (1968). Trace metal accumulation by estuarine mollusks. American Society of Civil Engineering, 94, 455–475.

    CAS  Google Scholar 

  • Pruell, R. J., Norwood, C. B., Bowen, R. D., Boothmas, W. S., Rogerson, P. F., Hacket, M., et al. (1990). Geochemical study of sediment concentrations in new Bedford Harbor, Massachusetts. Marine Environmental Research, 29, 77–101. doi:10.1016/0141-1136(90)90030-R.

    Article  CAS  Google Scholar 

  • Raoux, C. Y., & Garrigues, P. (1991). Mechanism model of polycyclic aromatic hydrocarbons contamination of marine coastal sediments from Miditerranean Sea. In P. Garrigues, & M. Lamotte (Eds.), Proceedings of the 13th international symposium on polynuclear aromatic hydrocarbons: Bordeaux, 1993. France 1–4th October (pp. 443–450). Longhorn, PA: Gordon & Breach Publishers.

    Google Scholar 

  • Readman, J. W., Mantoura, R. F. C., Rhead, M. M., & Brown, L. (1982). Aquatic distrbution and heterotrophic degradation of polycyclic aromatic hydrocarbons (PAH) in the Tamar Estuary. Estuarine, Coastal and Shelf Science, 14, 369–386.

    Article  CAS  Google Scholar 

  • Readman, J. W., Mantoura, R. F. C., & Rhead, M. M. (1984). The physicochemical speciation of polycyclic aromatic hydrocarbons speciation in aquatic systems. Fresenius’ Journal of Analytical Chemistry, 319, 126–131. doi:10.1007/BF00584673.

    Article  CAS  Google Scholar 

  • Rebello, A., De, I., Ponciano, C., & Melges, I. H. F. (1998). Avaliacao de produtividade primaria e da disponibilidade de nutrients na Baia de Guanabara. Anais da Academia Brasileira de Ciências, 60, 419–430.

    Google Scholar 

  • Sarkar, S. K., Singh, B. N., & Choudhury, A. (1985). The ecology of chaetognaths in the Hugely Estuary, West Bengal, India. Indian Journal of Marine Sciences, 14, 98–101.

    Google Scholar 

  • Sarkar, S. K., Bhattacharya, B., Debnath, S., Bandopadhaya, G., & Giri, S. (2002). Heavy metals in biota from Sundarban wetland ecosystem, eastern part of India Implications to monitoring and environmental assessment. Aquatic Ecosystem Health & Management, 5(2), 215–222.

    Google Scholar 

  • Sarkar, S. K., Franciscovic-Bilinski, S., Bhattacharya, A., Saha, M., & Bilinski, H. (2004). Levels of elements in the surficial estuarine sediments of the Hugely river, northeast India and their environmental implications. Environment International, 30, 1089–1098. doi:10.1016/j.envint.2003.10.009.

    Article  Google Scholar 

  • Sarkar, S. K., Saha, M., & Bhattacharya, B. (2006). Interspecific variation in heavy metal body concentrations in biota of Sunderban mangrove wetland, northeast India. Environment International, 32(2), 203–207. doi:10.1016/j.envint.2005.08.012.

    Article  CAS  Google Scholar 

  • Sarkar, S. K., Saha, M., Takada, H., Bhattacharya, A., Mishra, P., & Bhattacharya, B. (2007). Water quality management in the lower stretch of the river Ganges, east coast of India: An approach through environmental education. Journal of Cleaner Production, 15(16), 1459–1467. doi:10.1016/j.jclepro.2006.07.030.

    Article  Google Scholar 

  • Sarkar, S. K., Cabral, H., Chatterjee, M., Cardoso, I., Bhattachrya, A., Satpathy, K.K., et al. (2008). Biomonitoring of heavy metals using the bivalve molluscs in Sunderban mangrove wetland, northeast coast of Bay of Bengal (India): possible risks to human health. CLEAN - Soil, Air and Water Pollution, Wiley-VCH Verlag, Germany. Vol. 36(2), 187–194.

  • Sicre, M. A., Marty, J. C., Saliot, A., Aparicio, X., Grimalt, J., & Albaiges, J. (1987). Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrences and origin. Atmospheric Environment, 21, 2247–2259. doi:10.1016/0004-6981(87)90356-8.

    Article  CAS  Google Scholar 

  • Sporstøl, S., Gjøs, N., Lichtenthaler, R. G., Gustavsen, K. O., Urdal, K., & Oreld, F. (1983). Source identification of aromatic hydrocarbons in sediments using GC/MS. Environmental Science & Technology, 17, 182–186. doi:10.1021/es00111a008.

    Article  Google Scholar 

  • Varanasi, U., Chan, S. L., MacLeod, W. D., Stein, J. E., Brown, D. W., Burrows, D. G., et al. (1989). Survey of the Subsistence Fish and Shellfish for Exposure to Oil Spilled from Exxon Valdez. First Year: Environmental Conservation Division; National Oceanic and Atmospheric Administration; Seattle; NOAA Technical Memorandum NMES F/NWC-191: 1990. 151 pp.

  • Venkatesan, M. I., & Kaplan, I. R. (1982). Distribution and transport of hydrocarbons in surface sediments of the Alaskan Outer Continental Shelf. Geochimica et. Cosmochimica Acta, 46, 2135–2149. doi:10.1016/0016-7037(82)90190-9.

    Article  CAS  Google Scholar 

  • Viarengo, A. (1989). Heavy metals in marine invertebrates: mechanisms of regulation and toxicity at the cellular level. CRC. Critical Reviews of Aquatic Science, 1, 295–317.

    CAS  Google Scholar 

  • Walkey, A., & Black, T. A. (1934). An examination of the Dugtijaraff method for determining soil organic matter and proposed modification of the chronic and titration method. Soil Science, 37, 23–38.

    Google Scholar 

  • Wallner-Kersanach, M., Lobo, S. E., & da Silva, E. M. (1994). Depuration effects on trace metals in Anomalocardia brasiliana (Gmelin, 1791). Bulletin of Environmental Contamination and Toxicology, 52, 840–847. doi:10.1007/BF00200692.

    Article  CAS  Google Scholar 

  • Wang, Z., Fingas, M., Blenkinsopp, S., Sergy, G., Landriault, M., Sigouin, I., et al. (1998). Study of the 25-year-old Npisi oil spill: Persistence of oil residues and comparison between surface and subsurface sediments. Environmental Science & Technology, 32, 2222–2232. doi:10.1021/es971070h.

    Article  CAS  Google Scholar 

  • Webster, L., Russell, M., Packer, G., & Moffat, C. F. (2006). Long term monitoring of polycyclic aromatic hydrocarbonds (PAHs) in blue mussels (Mytilus edulis) from a remote Scottish location. Polycyclic Aromatic Compounds, 26, 283–298. doi:10.1080/10406630600904109.

    Article  CAS  Google Scholar 

  • Wei, S., Lau, R. K. F., Fung, C. N., Zheng, G. J., Lam, J. C. W., Connell, D. W., et al. (2006). Trace organic contamination in biota collected from the Pearl River Estuary, China: a preliminary risk assessment. Marine Pollution Bulletin, 52, 1682–1694. doi:10.1016/j.marpolbul.2006.06.009.

    Article  CAS  Google Scholar 

  • Wise, S. A., Hilpert, L. R., Rebbert, R. E., Sander, L. C., Schantz, M. M., Chesler, S. N., et al. (1988). Standard Reference materials for determination of polycyclic aromatic hydrocarbons. Fresenius’ Zeitschrift für Analytische Chemie, 332, 573–582. doi:10.1007/BF00472646.

    Article  CAS  Google Scholar 

  • White, K. L. (1986). An overview of immunotoxicology and polycyclic aromatic hydrocarbons. Environmental Carcinogenesis Reviews, 2, 163–202.

    Google Scholar 

  • Wu, Y., Zhang, J., & Zhu, Z. J. (1999). Polycyclic aromatic hydrocarbons in the sediments of the Yalujiang estuary, north China. Marine Pollution Bulletin, 46, 619–625. doi:10.1016/S0025-326X(03)00035-3.

    Article  CAS  Google Scholar 

  • Yan, L. S. (1985). Study of carcinogenic mechanisms for aromatic hydrocarbons—extended bay region theory and its quantitative model. Carcinogenesis, 6, 1–6. doi:10.1093/carcin/6.1.1.

    Article  CAS  Google Scholar 

  • Yang, G. P. (2000). Polycyclic aromatic hydrocarbons in the sediments of the South China Sea. Environmental Pollution, 108, 163–179. doi:10.1016/S0269-7491(99)00245-6.

    Article  CAS  Google Scholar 

  • Yang, G. P., Liu, X. L., & Zhang, J. W. (1998). Distribution of dibenzothiophene in the sediments of the South China Sea. Environmental Pollution, 101, 405–414. doi:10.1016/S0269-7491(98)00020-7.

    Article  CAS  Google Scholar 

  • Zanardi, E., Bicego, M. C., Miranda, L. B., & Weber, R. R. (1999). Distribution and origin of hydrocarbons in water and sediments in Sao Sebastiao, SP, Brazil. Marine Pollution Bulletin, 38, 261–267. doi:10.1016/S0025-326X(98)90143-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by a research project entitled “Concentration of heavy metals in sediment profiles of Sunderban mangrove environment, northeast India” (Sanction No: 24(0276)/05/EMR-II) funded by Council of Scientific and Industrial Research (CSIR), New Delhi, India. One of the authors (M. Chatterjee) is grateful to CSIR for awarding her SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuloaga, O., Prieto, A., Usobiaga, A. et al. Polycyclic Aromatic Hydrocarbons in Intertidal Marine Bivalves of Sunderban Mangrove Wetland, India: An Approach to Bioindicator Species. Water Air Soil Pollut 201, 305–318 (2009). https://doi.org/10.1007/s11270-008-9946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9946-y

Keywords

Navigation