Skip to main content
Log in

Diazinon Accumulation and Dissipation in Oryza sativa L. Following Simulated Agricultural Runoff Amendment in Flooded Rice Paddies

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Flooded post-harvest rice paddies were examined as systems for reducing diazinon (organophosphate insecticide) concentrations in stormwater runoff. Two paddies were cultivated in Oryza sativa L. and amended with a 3-h simulated stormwater diazinon runoff event. Initial diazinon adsorption peaked at 347 and 571 μg kg−1 (3% mass load reduction) for mean above-ground plant tissue concentrations in each pond, respectively. Subsequent senescence of above-ground tissue showed significant decreases in tissue mass (r 2 = 0.985) and adsorbed diazinon mass (90 ± 4% and 82 ± 1%) within 1 month of amendment. There were no corollary increases in water column diazinon concentrations. Furthermore, control O. sativa tissue placed within the treatment ponds had below-detectable levels of diazinon throughout the decomposition phase, suggesting a lack of within pond transference of dissipated diazinon. This study shows the relative effectiveness of diazinon adsorption by post-harvest rice plants and a potential mitigation strategy of senescence and pesticide degradation for contaminated tailwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alkorta, I., & Garbisu, C. (2001). Phytoremediation of organic contaminants in soils. Bioresource Technology, 79, 273–276. doi:10.1016/S0960-8524(01)00016-5.

    Article  CAS  Google Scholar 

  • Banks, K. E., Turner, P. K., Wood, S. H., & Matthews, C. (2005). Increased toxicity to Ceriodaphnia dubia in mixtures of atrazine and diazinon at environmentally realistic concentrations. Ecotoxicology and Environmental Safety, 60, 28–36. doi:10.1016/j.ecoenv.2003.12.016.

    Article  CAS  Google Scholar 

  • Bennett, E. R., Moore, M. T., Cooper, C. M., & Smith, S. J. (2000). Method for simultaneous extraction and analysis of two current use pesticides, atrazine and lambda-cyhalothrin, in sediment and aquatic plants. Bulletin of Environmental Contamination and Toxicology, 64, 825–833. doi:10.1007/s001280000077.

    Article  CAS  Google Scholar 

  • Brady, J. A., Wallender, W. W., Werner, I., Fard, B. M., Zalom, F. G., Oliver, M. N., et al. (2006). Pesticide runoff from orchard floors in Davis, California, USA: a comparative analysis of diazinon and esfenvalerate. Agriculture Ecosystems & Environment, 115, 56–68. doi:10.1016/j.agee.2005.12.009.

    Article  CAS  Google Scholar 

  • Branham, B. E., & Wehner, D. J. (1985). The fate of diazinon applied to thatched turf. Agronomy Journal, 77, 101–104.

    CAS  Google Scholar 

  • Cronk, J. K., & Fennessy, M. S. (2001). Wetland plants: Biology and ecology. NY: Lewis.

    Google Scholar 

  • de Vlaming, V., DiGiorgio, C., Fong, S., Deanovic, L. A., de la Paz Carpio-Obeso, M., et al. (2004). Irrigation runoff insecticide pollution of rivers in the Imperial Valley, California (USA). Environmental Pollution, 132, 213–229. doi:10.1016/j.envpol.2004.04.025.

    Article  CAS  Google Scholar 

  • Domagalski, J. (1996). Pesticides and pesticide degradation products in stormwater runoff: Sacramento River basin, California. Water Resources Bulletin, 32(5), 953–964.

    CAS  Google Scholar 

  • Epstein, L., Bassein, S., Zalom, F. G., & Wilhoit, L. R. (2001). Changes in pest management practice in almond orchards during the rainy season in California, USA. Agriculture Ecosystems & Environment, 83, 111–120. doi:10.1016/S0167-8809(00)00201-2.

    Article  Google Scholar 

  • Evans, J. R., Edwards, D. R., Workman, S. R., & Williams, R. M. (1998). Response of runoff diazinon concentration to formulation and post application irrigation. Transactions of the ASAE. American Society of Agricultural Engineers, 41(5), 1323–1329.

    CAS  Google Scholar 

  • Giddings, J. M., Biever, R. C., Annunziato, M. F., & Hosmer, A. J. (1996). Effects of diazinon on large outdoor pond microcosms. Environmental Toxicology and Chemistry, 15(5), 618–629. doi:10.1897/1551-5028(1996)015<0618:EODOLO>2.3.CO;2.

    Article  CAS  Google Scholar 

  • Graebing, P., & Chib, J. S. (2004). Soil photolysis in a moisture- and temperature-controlled environment. 2. Insecticides. Journal of Agricultural and Food Chemistry, 52, 2606–2614. doi:10.1021/jf030767l.

    Article  CAS  Google Scholar 

  • Gunner, H. B., Zuckerman, B. M., Walker, R. W., Miller, C. W., Deubert, K. H., & Longley, R. E. (1966). The distribution and persistence of diazinon applied to plant and soil and its influence on rhizosphere and soil microflora. Plant and Soil, 25(2), 249–264. doi:10.1007/BF01347822.

    Article  CAS  Google Scholar 

  • Holmes, R. W., & de Vlaming, V. (2003). Monitoring of diazinon concentrations and loadings, and identification of geographic origins consequent to stormwater runoff from orchards in the Sacramento River watershed, U.S.A. Environmental Monitoring and Assessment, 87, 57–79. doi:10.1023/A:1024437913245.

    Article  CAS  Google Scholar 

  • Horst, G. L., Shea, P. J., Christians, N., Miller, D. R., Stuefer-Powell, C., & Starrett, S. K. (1996). Pesticide dissipation under golf course fairway conditions. Crop Science, 36, 362–370.

    Article  CAS  Google Scholar 

  • Hughes, J. B., Shanks, J., Vanderford, M., Lauritzen, J., & Bhadra, R. (1997). Transformation of TNT by aquatic plants and plant tissue cultures. Environmental Science & Technology, 31, 266–271. doi:10.1021/es960409h.

    Article  CAS  Google Scholar 

  • Jayaweera, M. W., Kasturiarachchi, J. C., Kularatne, R. K. A., & Wijeyekoon, L. J. (2008). Contribution of water hyacinth (Eichornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. Journal of Environmental Management, 87, 450–460. doi:10.1016/j.jenvman.2007.01.013.

    Article  CAS  Google Scholar 

  • Joyce, B. A., Wallender, W. W., Angermann, T., & Wilson, B. W. (2004). Using infiltration enhancement and soil water management to reduce diazinon in runoff. Journal of the American Water Resources Association, 40(4), 1063–1070. doi:10.1111/j.1752-1688.2004.tb01067.x.

    Article  Google Scholar 

  • Kansouh, A. S. H., & Hopkins, T. L. (1968). Diazinon absorption, translocation and metabolism in bean plants. Journal of Agricultural and Food Chemistry, 16(3), 446–450. doi:10.1021/jf60157a021.

    Article  CAS  Google Scholar 

  • Kratzer, C. R. (1999). Transport of diazinon in the San Joaquin River basin, California. Journal of the American Water Resources Association, 35(2), 379–395. doi:10.1111/j.1752-1688.1999.tb03597.x.

    Article  CAS  Google Scholar 

  • Kröger, R., Holland, M. M., Moore, M. T., & Cooper, C. M. (2007). Plant senescence: a mechanism for nutrient release in temperate agricultural wetlands. Environmental Pollution, 146, 114–119. doi:10.1016/j.envpol.2006.06.005.

    Article  CAS  Google Scholar 

  • Laanio, T. L., Dupuis, G., & Esser, H. O. (1972). Fate of 14C-labeled diazinon in rice, paddy soil, and pea plants. Journal of Agricultural and Food Chemistry, 20(6), 1213–1219. doi:10.1021/jf60184a044.

    Article  CAS  Google Scholar 

  • Larkin, D. J., & Tjeerdama, R. S. (2000). Fate and effects of diazinon. Reviews of Environmental Contamination and Toxicology, 166, 49–82.

    CAS  Google Scholar 

  • Macek, T., Mackova, M., & Kas, J. (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnology Advances, 18, 23–34. doi:10.1016/S0734-9750(99)00034-8.

    Article  CAS  Google Scholar 

  • Meyers, D. E. R., Auchterlonie, G. J., Webb, R. I., & Wood, B. (2008). Uptake and localization of lead in the root system of Brassica juncea. Environmental Pollution, 153, 323–332. doi:10.1016/j.envpol.2007.08.029.

    Article  CAS  Google Scholar 

  • Outridge, P. M., & Noller, B. N. (1991). Accumulation of toxic trace elements by freshwater vascular plants. Reviews of Environmental Contamination and Toxicology, 121, 1–63.

    CAS  Google Scholar 

  • Schiff, K., & Sutula, M. (2004). Organophosphorus pesticides in storm-water runoff from southern California (USA). Environmental Toxicology and Chemistry, 23(8), 1815–1821. doi:10.1897/03-401.

    Article  CAS  Google Scholar 

  • Schueler, T. (1995). Urban pesticides: from lawn to the stream. Watershed Protection Techniques, 2(1), 247–253.

    Google Scholar 

  • Smith, S. J., & Cooper, C. M. (2004). Pesticides in shallow groundwater and lake water in the Mississippi Delta MSEA. In M. Nett, M. Locke, and D. Pennington Water Quality Assessments in the Mississippi Delta, Regional Solutions, National Scope. (Pages 91–103). ACS Symposium series 877, American Chemical Society, Oxford University Press, Chicago, IL.

  • Smith Jr, S., Cooper, C. M., Lizotte Jr, R. E., & Shields Jr., F. D. (2006). Storm pesticide concentrations in Little Toposhaw Creek, USA. International Journal of Ecology and Environmental Sciences, 32(2), 173–182.

    Google Scholar 

  • Syversen, N., & Haarstad, K. (2005). Retention of pesticides and nutrients in a vegetated buffer root zone compared to soil with low biological activity. International Journal of Environmental Analytical Chemistry, 85(15), 1175–1187. doi:10.1080/03067310500117400.

    Article  CAS  Google Scholar 

  • USEPA. (2007). EPA announces requests to voluntarily cancel registrations of diazinon. EPA announcement. http://www.epa.gov/oppfead1/cb/csb_page/updates/diazin-volcanc.html. Accessed 08/24/2007.

  • Watanabe, H., & Grismer, M. E. (2001). Diazinon transport through inter-row vegetative filter strips: micro-ecosystem modeling. Journal of Hydrology (Amsterdam), 247, 183–199. doi:10.1016/S0022-1694(01)00385-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was gratefully received through the cooperative agreement between the USDA-ARS and the University of Mississippi, No. 58-6408-1-095. Thanks go to the staff of the Water Quality and Ecology Research Unit at the USDA-ARS (Sam Testa, Charlie Bryant, Tim Sullivan, Calvin Vick, John Massey, and Terry Welch) for field help and especially to Lisa Brooks and Sammie Smith Jr. for sample preparation and analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kröger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kröger, R., Moore, M.T., Cooper, C.M. et al. Diazinon Accumulation and Dissipation in Oryza sativa L. Following Simulated Agricultural Runoff Amendment in Flooded Rice Paddies. Water Air Soil Pollut 201, 209–218 (2009). https://doi.org/10.1007/s11270-008-9938-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9938-y

Keywords

Navigation