Skip to main content
Log in

Preparation, Characterization, and Adsorption Behavior of Cu(II) Ions onto Alkali-Treated Weed (Imperata cylindrica) Leaf Powder

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The adsorption of Cu(II) ions by sodium-hydroxide-treated Imperata cylindrica (SoHIC) leaf powder was investigated under batch mode. The influence of solution pH, adsorbent dosage, shaking rate, copper concentration, contact time, and temperature was studied. Copper adsorption was considered fast as the time to reach equilibrium was 40–90 min. Several kinetic models were applied and it was found that pseudo-second-order fitted well the adsorption data. In order to understand the mechanism of adsorption, spectroscopic analyses involving scanning electron microscope (SEM) coupled with energy-dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR) spectrophotometer were carried out. Ion exchange was proven the main mechanism involved as indicated by EDS spectra and as there was a release of light metal ions (K+, Na+, Mg2+, and Ca2+) during copper adsorption. Complexation also occurred as demonstrated by FTIR spectra involving hydroxyl, carboxylate, phosphate, ether, and amino functional groups. The equilibrium data were correlated with Langmuir, Freundlich, and Dubinin–Radushkevich isotherm models. Based on Langmuir model, the maximum adsorption capacity was recorded at the highest temperature of 310 K, which was 11.64 mg g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abu Al-Rub, F. A., El-Naas, M. H., Ashour, I., & Al-Marzouqi, M. (2006). Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions. Process Biochemistry, 41, 457–464. doi:10.1016/j.procbio.2005.07.018.

    Article  Google Scholar 

  • Akar, T., & Tunali, S. (2005). Biosorption performance of Botrytis cinerea fungal by-products for removal of Cd(II) and Cu(II) ions from aqueous solutions. Minerals Engineering, 18, 1099–1109. doi:10.1016/j.mineng.2005.03.002.

    Article  CAS  Google Scholar 

  • Aman, T., Kazi, A. A., Sabri, M. U., & Bano, Q. (2008). Potato peels as solid waste for the removal of heavy metal copper (II) from waste water/industrial effluent. Colloids and Surfaces B, Biointerfaces, 63, 116–121. doi:10.1016/j.colsurfb.2007.11.013.

    Article  CAS  Google Scholar 

  • Amuda, O. S., Giwa, A. A., & Bello, I. A. (2007). Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochemical Engineering Journal, 36, 174–181. doi:10.1016/j.bej.2007.02.013.

    Article  CAS  Google Scholar 

  • AOAC (1997). Official methods of analysis of Association of Analytical Chemists International (16th ed.). Gaithersburg: AOAC.

    Google Scholar 

  • Argun, M. E., Dursun, S., Ozdemir, C., & Karatas, M. (2007). Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. Journal of Hazardous Materials, 141, 77–85. doi:10.1016/j.jhazmat.2006.06.095.

    Article  CAS  Google Scholar 

  • Badmus, M. O. A., Audu, T. O. K., & Anyata, B. (2006). Removal of copper from industrial wastewaters by activated carbon prepared from periwinkle shells. Korean Journal of Chemical Engineering, 24, 246–252. doi:10.1007/s11814-007-5049-5.

    Article  Google Scholar 

  • Balistrieri, L. S., & Murray, J. W. (1981). The surface chemistry of goethite (α-FeOOH) in major ion seawater. American Journal of Science, 281, 788–806.

    CAS  Google Scholar 

  • Chen, H., Zhao, Y., & Wang, A. (2007). Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite. Journal of Hazardous Materials, 149, 346–354. doi:10.1016/j.jhazmat.2007.03.085.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2008). Heavy metal adsorption onto agro-based waste materials: A review. Journal of Hazardous Materials, 157, 220–229. doi:10.1016/j.jhazmat.2008.01.024.

    Article  CAS  Google Scholar 

  • Dubinin, M. M., Zaverina, E. D., & Radushkevich, L. V. (1947). Sorption and structure of active carbons. I. Adsorption of organic vapors. Journal of Physical Chemistry, 21, 1351–1362.

    CAS  Google Scholar 

  • Ferro-García, M. A., Rivera-Utrilla, J., Rodríguez-Gordillo, J., & Bautista-Toledo, I. (1998). Adsorption of zinc, cadmium and copper on activated carbons obtained from agricultural by-products. Carbon, 26, 363–373. doi:10.1016/0008-6223(88)90228-X.

    Article  Google Scholar 

  • Freundlich, H. M. F. (1906). ϋber die adsorption in läsungen. Zeitschrift für Physikalische Chemie, 57, 385–470.

    CAS  Google Scholar 

  • Gasser, M. S., Morad, G. A., & Aly, H. F. (2006). Equilibrium and kinetics study of Gd(III) and U(VI) adsorption from aqueous solutions by modified Sorrel’s cement. Adsorption, 12, 65–76. doi:10.1007/s10450-006-0139-y.

    Article  CAS  Google Scholar 

  • Gündoğan, R., Acemioğlu, B., & Alma, M. H. (2004). Copper (II) adsorption from aqueous solution by herbaceous peat. Journal of Colloid and Interface Science, 269, 303–309. doi:10.1016/S0021-9797(03)00762-8.

    Article  Google Scholar 

  • Güzel, F., Yakut, H., & Topal, G. (2008). Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues. Journal of Hazardous Materials, 153, 1275–1287. doi:10.1016/j.jhazmat.2007.09.087.

    Article  Google Scholar 

  • Ho, Y. S., & McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 76, 332–340. doi:10.1205/095758298529696.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 34, 735–742. doi:10.1016/S0043-1354(99)00232-8.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (2004). Sorption of copper(II) from aqueous solution by peat. Water, Air, and Soil Pollution, 158, 77–97. doi:10.1023/B:WATE.0000044830.63767.a3.

    Article  CAS  Google Scholar 

  • Holm, L. G., Plucknett, D. L., Pancho, J. V., & Herberger, H. P. (1977). The world’s worst weeds: Distribution, and biology. Honolulu: University Press of Hawaii.

    Google Scholar 

  • Isaac, R. A., & Kerber, J. D. (1971). Atomic absorption and flame photometry: Techniques and uses in soil, plant and water analysis. In L. M. Walsh (Ed.), Instrumental methods for analysis of soils and plant tissue (pp. 17–37). Madison: Soil Science Society of America Inc.

    Google Scholar 

  • Kannan, N., & Rengasamy, G. (2005). Comparison of cadmium ion adsorption on various activated carbons. Water, Air, and Soil Pollution, 163, 185–201. doi:10.1007/s11270-005-0277-y.

    Article  CAS  Google Scholar 

  • Kim, T. Y., Park, S. K., Cho, S. Y., Kim, H. B., Kang, Y., Kim, S. D., et al. (2005). Adsorption of heavy metals by brewery biomass. Korean Journal of Chemical Engineering, 22, 91–98. doi:10.1007/BF02701468.

    Article  CAS  Google Scholar 

  • Kiran, I., Akar, T., & Tunali, S. (2005). Biosorption of Pb(II) and Cu(II) from aqueous solutions by pretreated biomass of Neurospora crassa. Process Biochemistry, 40, 3550–3558. doi:10.1016/j.procbio.2005.03.051.

    Article  CAS  Google Scholar 

  • Küçükgül, E. Y., & Kutlu, S. (2006). Zinc and copper adsorption from an aqueous solution onto activated carbon. Fresenius Environmental Bulletin, 15, 512–517.

    Google Scholar 

  • Lale, M., Temoçin, Z., & Bag, H. (2005). Sorption behaviour of copper(II), zinc(II) and nickel(II) on formaldehyde cross-linked Saccharomyces cerevisiae immobilized on pumice stone. Fresenius Environmental Bulletin, 10, 736–740.

    Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38, 2221–2295. doi:10.1021/ja02268a002.

    Article  CAS  Google Scholar 

  • Megat Hanafiah, M. A. K., Ibrahim, S. C., & Yahya, M. Z. A. (2006). Equilibrium adsorption study of lead ions onto sodium hydroxide modified Imperata cylindrica leaf powder. Journal of Applied Sciences Research, 2, 1169–1174.

    Google Scholar 

  • Noh, J. S., & Schwarz, J. A. (1990). Estimation of the point of zero charge of simple oxides by mass titration. Journal of Colloid and Interface Science, 130, 157–164. doi:10.1016/0021-9797(89)90086-6.

    Article  Google Scholar 

  • O’Connell, D. W., Birkinshaw, C., & O’Dwyer, T. F. (2008). Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresource Technology, 99, 6709–6724. doi:10.1016/j.biortech.2008.01.036.

    Article  Google Scholar 

  • Onyango, M. S., Kojima, Y., Kumar, A., & Kuchar, D. (2006). Uptake of fluoride by Al3+ pretreated low-silica synthetic zeolites: Adsorption equilibrium and rate studies. Separation Science and Technology, 41, 683–704. doi:10.1080/01496390500527019.

    Article  CAS  Google Scholar 

  • Salehi, P., Asghari, B., & Mohammadi, F. (2008). Removal of heavy metals from aqueous solutions by Cercis siliquastrum L. Journal of the Iranian Chemical Society, 5, 80–86.

    Google Scholar 

  • Sengorur, B., Ogleni, O., & Ogleni, N. (2006). Removal of copper and zinc from automotive wastewater by purolite C-104 ion exchange resin. Fresenius Environmental Bulletin, 15, 182–185.

    CAS  Google Scholar 

  • Strelko, V., Malik, D. J., & Streat, M. (2002). Characterisation of the surface of oxidized carbon adsorbents. Carbon, 40, 95–104. doi:10.1016/S0008-6223(01)00082-3.

    Article  CAS  Google Scholar 

  • Upendra, K., & Bandyopadhyay, M. (2006). Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresource Technology, 97, 104–109. doi:10.1016/j.biortech.2005.02.027.

    Article  Google Scholar 

  • Veglio’, F., & Beolchini, F. (1997). Removal of metals by biosorption: A review. Hydrometallurgy, 44, 30–316.

    Google Scholar 

  • Villaescusa, I., Fiol, N., & Martínez, M. (2004). Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Research, 38, 992–1002.

    Article  CAS  Google Scholar 

  • Wan Ngah, W. S., & Hanafiah, M. A. K. M. (2008a). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresource Technology, 99, 3935–3948.

    Article  CAS  Google Scholar 

  • Wan Ngah, W. S., & Hanafiah, M. A. K. M. (2008b). Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: kinetic, equilibrium and thermodynamic studies. Biochemical Engineering Journal, 39, 521–530.

    Article  CAS  Google Scholar 

  • Wan Ngah, W. S., & Hanafiah, M. A. K. M. (2008c). Surface modification of rubber (Hevea brasiliensis) leaves for the adsorption of copper ions: kinetic, thermodynamic and binding mechanisms. Journal of Chemical Technology and Biotechnology. doi:10.1002/jctb.2024.

Download references

Acknowledgement

The authors gratefully acknowledge the Malaysian Ministry of Higher Education for providing financial support under Fundamental Research Grant Scheme of 011000070004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. S. Wan Ngah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanafiah, M.A.K.M., Zakaria, H. & Wan Ngah, W.S. Preparation, Characterization, and Adsorption Behavior of Cu(II) Ions onto Alkali-Treated Weed (Imperata cylindrica) Leaf Powder. Water Air Soil Pollut 201, 43–53 (2009). https://doi.org/10.1007/s11270-008-9926-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9926-2

Keywords

Navigation