Water, Air, and Soil Pollution

, Volume 201, Issue 1–4, pp 19–31 | Cite as

Bioaccumulation of Heavy Metals by Aquatic Macroinvertebrates Along the Basento River in the South of Italy



In this study, the occurrence of toxic heavy metals (As, Cd, Cr, Cu, Pb, and Zn) and relative bioaccumulation in biota samples were investigated in a freshwater ecosystem, the Basento river, one of the main aquatic systems in the south of Italy, which over the last years has been transformed into a sink of urban and industrial wastes. Therefore, the levels of arsenic, cadmium, chromium, copper, lead, and zinc were determined in water, sediments, and tissues of some macroinvertebrate—which are natural assessment endpoints for the evaluation of ecological risk in aquatic systems. Accumulation factors, as a ratio between the concentration of a given contaminant in biota and the one in an abiotic medium, were considered in order to estimate heavy metal contamination loads in biota. Statistical analysis was performed for a comparative evaluation of bioaccumulation among various macroinvertebrates, according to different feeding guilds. The Tukey honestly significantly different test showed significant differences in the bioaccumulation of As, Cd, and Cr among the considered biological receptors (collector–gatherer, predator, and filterer), suggesting that the biological uptake from immediate contact with the sediment or solid substratum (collector–gatherer), instead of the bioconcentration from water (filterer) or biomagnification along the biotic food webs (predators), is the more effective biological sequestering pathway for these metals. Biota–sediment accumulation factors, commonly used for the evaluation of sediment’s role in aquatic systems contamination, were determined for the considered metals. A linear correlation between the concentrations of As, Cd, Cr, and Zn in macroinvertebrates and those in the sediments suggested that the metal uptake data in macroinvertebrates can provide useful information for the estimation of heavy metal exposure risk or bioavailability when making assessments of sediment toxicity in freshwater ecosystems.


Heavy metals Macroinvertebrates Oligochaeta: Lumbriculidae Bioaccumulation Sediment pollution Freshwater pollution 



Sincere thanks to the Research Centre ENEA-Trisaia of Rotondella (MT), Italy, for providing samples and analytical instruments.


  1. Adamus, P., Danielson, T. J., & Gonyaw, A. (2001). Indicators for monitoring biological integrity of inland, freshwater wetlands. EPA 842-R-01. Available at http://www.epa.gov/owow/wetlands/bawwg/monindicators.pdf. Accessed 17 October 2008.
  2. Amisah, S., & Cowx, I. G. (2000). Impacts of abandoned mine and industrial discharges on fish abundance and macroinvertebrate diversity of the upper River Don in South Yorkshire, UK. Journal of Freshwater Ecology, 15(2), 237–250.Google Scholar
  3. APAT-IRSA-CNR. (2003). Indicatori biologici. Man, 29(03, No. 9010). Available at http://www.indicefunzionalitafluviale.it/9000–9010.pdf. Accessed 13 September 2008 In Italian.
  4. Beasley, G., & Kneale, P. E. (2004). Assessment of heavy metal and PAH contamination of urban streambed sediments on macroinvertebrates. Water Air and Soil Pollution Focus, 4(2–3), 563–578. doi: 10.1023/B:WAFO.0000028378.66068.e8.Google Scholar
  5. Braccia, A., & Voshell, J. R. Jr. (2006). Environmental factors accounting for benthic macroinvertebrate assemblage structure at the sample scale in streams subjected to a gradient of cattle grazing. Hydrobiologia, 573, 55–73. doi: 10.1007/s10750-006-0257-2.CrossRefGoogle Scholar
  6. Bush, B., Simpson, K. W., Shane, L., & Koblintz, R. R. (1985). PCB congener analysis of water and caddisfly larvae (Insecta: Trichoptera) in the Upper Hudson River by glass capillary chromatography. Bulletin of Environmental Contamination and Toxicology, 34(1), 96–105. doi: 10.1007/BF01609708.CrossRefGoogle Scholar
  7. Casabianca, T., Magarelli, R., & Santoro, A. (2004). Bioaccumulo di macroinvertebratii bentonici a diverse strategie nutrizionali. Collana “Rapporti Tecnici” del Dipartimento Ambiente dell’ENEA, RT/2004/32/PROT (In Italian).Google Scholar
  8. Casper, A. F. (1994). Population and community effects of sediment contamination from residential urban runoff on benthic macroinvertebrate biomass and abundance. Bulletin of Environmental Contamination and Toxicology, 53(6), 796–799. doi: 10.1007/BF00196206.CrossRefGoogle Scholar
  9. Chianese, D., D’Emilio, M., Bavusi, M., Lapenna, V., & Macchiato, M. (2006). Magnetic and ground probing radar measurements for soil pollution mapping in the industrial area of Val Basento (Basilicata Region, Southern Italy): a case study. Environmental Geology, 49(3), 389–404. doi: 10.1007/s00254-005-0082-3.CrossRefGoogle Scholar
  10. Clarke, K. D., & Scruton, D. A. (1997). The benthic community of stream riffles in Newfoundland, Canada and its relationship to selected physical and chemical parameters. Journal of Freshwater Ecology, 12, 113–121.Google Scholar
  11. Courtney, L. A., & Clements, W. H. (2002). Assessing the influence of water and substratum quality on benthic macroinvertebrate communities in a metal-polluted stream: an experimental approach. Freshwater Biology, 47(9), 1766–1778. doi: 10.1046/j.1365-2427.2002.00896.x.CrossRefGoogle Scholar
  12. DIN 38410 Teil 2 (1990). Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung: Biologischökologische Gewässeruntersuchung (Gruppe M): Bestimmung des Saprobienindex (M2). Weinheim: Wiley, (in German).Google Scholar
  13. D.Lgs 152/06 (2006). Norme in materia ambientale. Decreto Legislativo No.152. Gazzetta Ufficiale No. 88(96). Available at http://www.parlamento.it/leggi/deleghe/06152dl.htm. Accessed 7 October 2008 (in Italian).
  14. Doi, H., Takagi, A., & Kikuchi, E. (2007). Stream macroinvertebrate community affected by point-source metal pollution. International Review of Hydrobiology, 92(3), 258–266. doi: 10.1002/iroh.200610923.CrossRefGoogle Scholar
  15. Dural, M., Göksu, M. Z. L., Özak, A. A., & Derici, B. (2006). Bioaccumulation of some heavy metals in different tissues of Dicentrarchus Labrax L, 1758, Sparus Aurata L, 1758 and Mugil Cephalus L, 1758 from the Çamlik Lagoon of the eastern cost of Mediterranean (Turkey). Environmental Monitoring and Assessment, 118(1–3), 65–74. doi: 10.1007/s10661-006-0987-7.CrossRefGoogle Scholar
  16. Fleit, E., & Lakatos, G. (2003). Accumulative heavy metal patterns in the sediment and biotic compartments of the Tisza watershed. Toxicology Letters, 140-141, 323–332. doi: 10.1016/S0378-4274(03)00029-8.CrossRefGoogle Scholar
  17. Ghetti, P. F. (1997). Indice Biotico Esteso (E.B.I.). I macroinvertebrati nel controllo della qualità degli ambienti di acque correnti. Manuale di applicazione. Provincia autonoma di Trento, Trento, Italy (In Italian).Google Scholar
  18. Gibson, G. R., Barbour, M. T., Stribling, J. B., Gerritsen, J., & Karr, J. R.(1996). Biological criteria: Technical guidance for streams and small rivers. U.S. Environmental Protection Agency, Office of Water, Washington, DC. EPA 822-B-96-001. Available at http://www.epa.gov/bioindicators/html/bioltech.html. Accessed 15 October 2008.
  19. Goodyear, K. L., & McNeill, S. (1999). Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: a review. The Science of the Total Environment, 229(1), 1–19. doi: 10.1016/S0048-9697(99)00051-0.CrossRefGoogle Scholar
  20. Graça, M. A. S., Pinto, P., Cortes, R., Coimbra, N., Oliveira, S., Morais, M., et al. (2004). Factors affecting macroinvertebrate richness and diversity in Portuguese streams: A two-scale analysis. International Review of Hydrobiology, 89(2), 151–164. doi: 10.1002/iroh.200310705.CrossRefGoogle Scholar
  21. Green, J. (1993). Zooplankton associations in East African lakes spanning a wide salinity range. Hydrobiologia, 267, 249–256. doi: 10.1007/BF00018806.CrossRefGoogle Scholar
  22. Grimm, N. B., Foster, D., Groffman, P., Grove, J. M., Hopkinson, C. S., Nadelhoffer, K. J., et al. (2008a). The changing landscape: Ecosystem responses to urbanization and pollution across climatic and societal gradients. Frontiers in Ecology and the Environment, 6(5), 264–272. doi: 10.1890/070147.CrossRefGoogle Scholar
  23. Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., et al. (2008b). Global change and the ecology of cities. Science, 319, 756–760. doi: 10.1126/science.1150195.CrossRefGoogle Scholar
  24. Grumiaux, F., Leprêtre, A., & Dhainaut-Courtois, N. (1998). Effect of sediment quality on benthic macroinvertebrate communities in streams in the north of France. Hydrobiologia, 385(1–3), 33–46. doi: 10.1023/A:1003493322894.CrossRefGoogle Scholar
  25. Haus, N., Zimmermann, S., Wiegand, J., & Sures, B. (2007). Occurrence of platinum and additional traffic related heavy metals in sediments and biota. Chemosphere, 66(4), 619–629. doi: 10.1016/j.chemosphere.2006.07.097.CrossRefGoogle Scholar
  26. Hare, L., & Tessier, A. (1998). The aquatic insect Chaoborus as a biomonitor of trace metals in lakes. Limnology and Oceanography, 43(8), 1850–1859.Google Scholar
  27. Holland, A. F., Shaughnessy, A. T., & Hiegel, M. H. (1987). Long-term variation in mesohaline Chesapeake Bay macrobenthos: Spatial and temporal patterns. Estuaries, 10(3), 227–245. doi: 10.2307/1351851.CrossRefGoogle Scholar
  28. Klavinš, M., Briede, A., Parele, E., Rodionov, V., & Klavina, I. (1998). Metal accumulation in sediment and benthic invertebrates in lakes of Latvia. Chemosphere, 36(15), 3043–3053. doi: 10.1016/S0045-6535(98)00010-1.CrossRefGoogle Scholar
  29. Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621. doi: 10.2307/2280779.CrossRefGoogle Scholar
  30. Marqués, M. J., Martínez-Conde, E., & Rovira, J. V. (2003). Effects of zinc and lead mining on the benthic macroinvertebrates of fluvial ecosystem. Water, Air, and Soil Pollution, 148(1–4), 363–388. doi: 10.1023/A:1025411932330.CrossRefGoogle Scholar
  31. Moalla, S. M. N., Awadallah, R. M., Rashed, M. N., & Soltan, M. E. (1998). Distribution and chemical fractionation of some heavy metals in bottom sediments of Lake Nasser. Hydrobiologia, 364(1), 31–40. doi: 10.1023/A:1003112008122.CrossRefGoogle Scholar
  32. Murphy, J. F., & Davy-Bowker, J. (2005). Spatial structure in lotic macroinvertebrate communities in England and Wales: Relationship with physical, chemical and anthropogenic stress variables. Hydrobiologia, 534(1–3), 151–164. doi: 10.1007/s10750-004-1451-8.CrossRefGoogle Scholar
  33. Mullis, R. M., Revitt, D. M., & Shutes, R. B. E. (1996). A statistical approach for the assessment of the toxic influence on Gammarus Pulex (Anphipoda) and Asellus Aquaticus (Isopoda) exposed to urban aquatic discharges. Water Research, 30(5), 1237–1249. doi: 10.1016/0043-1354(95)00281-2.CrossRefGoogle Scholar
  34. Nahmani, J., & Rossi, J. P. (2003). Soil macroinvertebrates as indicators of pollution by heavy metals. Comptes Rendus Biologies, 326(3), 295–303. doi: 10.1016/S1631-0691(03)00070-2.CrossRefGoogle Scholar
  35. Nahmani, J., Capowiez, Y., & Lavelle, P. (2005). Effects of metal pollution on soil macroinvertebrate burrow systems. Biology and Fertility of Soils, 42(1), 31–39. doi: 10.1007/s00374-005-0865-4.CrossRefGoogle Scholar
  36. National Water Council (1977). Final report of the working party on consent conditions for effluent discharges to freshwater streams. London, UK: NWC.Google Scholar
  37. Pourang, N. (1996). Heavy metal concentration in surficial sediments and benthic macroinvertebrates from Anzali wetland, Iran. Hydrobiologia, 331, 53–61. doi: 10.1007/BF00025407.CrossRefGoogle Scholar
  38. Radina, B. (1969). Idrogeologia del bacino del fiume Basento. Memorie degli Istituti di Geologia e Mineralogia. Università di Padova, XXVII, 3–52. In Italian.Google Scholar
  39. Rhea, D. T., Harper, D. D., Farag, A. M., & Brumbaugh, W. G. (2006). Biomonitoring in the boulder river watershed, Montana, USA: Metal concentrations in biofilm and macroinvertebrates, and relations with macroinvertebrate assemblage. Environmental Monitoring and Assessment, 115(1–3), 381–393. doi: 10.1007/s10661-006-7086-7.CrossRefGoogle Scholar
  40. Ruus, A., Schaanning, M., Øxnevad, S., & Hylland, K. (2005). Experimental results on bioaccumulation of metals and organic contaminants from marine sediments. Aquatic Toxicology (Amsterdam, Netherlands), 72(3), 273–292. doi: 10.1016/j.aquatox.2005.01.004.Google Scholar
  41. Santoro, A., Terzano, R., Spagnuolo, M., Fiore, S., Morgana, M., & Ruggiero, P. (in press). Mercury distribution in soils and plants surrounding an industrial area in the South of Italy. International Journal of Environment and Waste Management, 3(4). ISSN: 1478–9876.Google Scholar
  42. Schmidt, T. S., Soucek, D. J., & Cherry, D. S. (2002). Integrative assessment of benthic macroinvertebrates community impairment from metal-contaminated waters in tributaries of the Upper Powell River, Virginia, USA. Environmental Toxicology and Chemistry, 21(10), 2233–2241. doi: 10.1897/1551-5028(2002)021<2233:IAOBMC>2.0.CO;2.CrossRefGoogle Scholar
  43. Solá, C., & Prat, N. (2006). Monitoring metal and metalloid bioaccumulation in Hydropsyche (Trichoptera, Hydropsychidae) to evaluate metal pollution in a mining river. Whole body versus tissue content. The Science of the Total Environment, 359(1–3), 221–231. doi: 10.1016/j.scitotenv.2005.04.007.Google Scholar
  44. Solá, C., Burgo, M., Plazuelo, A., Toja, J., Plans, M., & Prat, N. (2004). Heavy metal bioaccumulation and macroinvertebrate community changes in a Mediterranean stream affected by acid mine drainage and an accidental spill (Guadiamar River, SW Spain). The Science of the Total Environment, 333(1–3), 109–127. doi: 10.1016/j.scitotenv.2004.05.011.Google Scholar
  45. Soldner, M., Stephen, I., Ramos, L., Angus, R., Wells, N. C., Grosso, A., et al. (2004). Relationship between macroinvertebrate fauna and environmental variables in small streams of the Dominican Republic. Water Research, 38(4), 863–874. doi: 10.1016/S0043-1354(03)00406-8.CrossRefGoogle Scholar
  46. Thorne, R., & Williams, P. (2003). The response of benthic macroinvertebrates to pollution in developing countries: a multimetric system of bioassessment. Freshwater Biology, 37(3), 671–686. doi: 10.1046/j.1365-2427.1997.00181.x.CrossRefGoogle Scholar
  47. Tukey, J. W. (1953). The problem of multiple comparison. Unpublished notes. Princeton University, Princeton, New Jersey.Google Scholar
  48. Walsh, A. (2005). Reference conditions and eutrophication impacts in Irish Rivers: Meeting the requirements of the water framework directive. Available at http://www.epa.ie/downloads/pubs/research/water/fs2-m1–2000-final%20report.pdf. Accessed 17 September 2008.
  49. Williams, W. D., Taaffe, R. G., & Boulton, A. J. (1991). Longitudinal distribution of macroinvertebrates in two rivers subject to salinization. Hydrobiologia, 210, 151–160.Google Scholar
  50. Woodwiss, F. S. (1978). Biological water assessment methods. United Kingdoms: Severn Trent River Authorities.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • A. Santoro
    • 1
  • G. Blo
    • 2
  • S. Mastrolitti
    • 3
  • F. Fagioli
    • 2
  1. 1.Department of Agricultural and Environmental Biology and ChemistryUniversity of BariBariItaly
  2. 2.Department of ChemistryUniversity of the Study of FerraraFerraraItaly
  3. 3.Research Centre ENEA-TrisaiaRotondellaItaly

Personalised recommendations