The Effect of the Uranium Content in the Tailings on Some Cultivated Plants

Abstract

Uranium is a radiotoxic and chemotoxic heavy metal. Uptake and accumulation of U has been studied in plants native to uranium mine sites, but not in cultivated plants which are commonly consumed by humans. The objective of this study was better understanding of U uptake and accumulation in cultivated plants and whether different contents of uranium (U) in the substrate affect its concentration in plants and their dry matter mass. Two substrate variants for growing plants, which differed in the uranium content: solid wastes (tailings) and tailings mixed with sand (w/w 1:1). Large amounts of solid wastes (tailings) resulting from the exploitation and treatment of uranium ore from the closed uranium mine Gabrovnica–Kalna, on southeast of Serbia, contained generally 15.33 mg U/kg. In the experiment, three plant species (corn NSSC 231, sunflower N.S. Dukat, and green peas Smederevska Palanka) were grown in pots on the four substrate variants during 40 days. Substrate was suffused by drinking water (DW) and “uranium water” (UW), which issue out from the mine, contained 0,053 mg U/ dm3. Obtained results show that when UW was added to tailing concentration of U in plants increased. When the content of U in the substrate was lowered by adding sand, the concentration of U in plants decreased, though was significantly higher in comparison to the variants to which DW was added. Dry matter mass was higher in variants where UW was used. Concentration of U was significantly higher in root than in above-ground parts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adler, T. (1996). Using plants to tackle polluted water and soil. Science News, 150, 42–43. doi:10.2307/3980349.

    Article  Google Scholar 

  2. Baumgartner, D. J., Glenn, E. P., Kuehl, R. O., Thompson, T. L., Artiola, J. F., Menke, S. E., et al. (2000). Plant uptake response to metals and nitrate in simulated uranium mill tailings contaminated groundwater. Water, Air, & Soil Pollution, 118, 115–129.

    Article  CAS  Google Scholar 

  3. Bikit, I., Sarić, M., Conkić, L., Slivka, J., & Krmar, M. (1995). Transport of natural radionuclides from soil to plants, Belgrade, Yugoslav Society for Protection from Radiation, 221–224.

  4. Boileau, L. J. R., Nieboer, E., & Richardson, D. H. S. (1985). Uranium accumulation in the lichen Cladonia rangiferina. II. Toxic effects of cationic, neutral, and anionic forms of the uranyl ion. Canadian Journal of Botany, 63, 390–397.

    CAS  Google Scholar 

  5. Chen, S. B., Zhu, Y. G., & Hu, H. Q. (2005). Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China. Journal of Environmental Radioactivity, 82(2), 223–236. doi:10.1016/j.jenvrad.2005.01.009.

    Article  CAS  Google Scholar 

  6. Fernandes, H. M., Franklin, M. R., Veiga, L. H. S., Freitas, P., & Gomiero, L. A. (1996). Management of uranium mill tailing: geochemical processes and radiological risk assessment. Journal of Environmental Radioactivity, 30(1), 69–95. doi:10.1016/0265-931X(95)00032-6.

    Article  CAS  Google Scholar 

  7. Ghosh, D., Argha Deb, A., Bera, S., Sengupta, R., & Kumar, P. (2007). Measurement of natural radioactivity in chemical fertilizer and agricultural soil: evidence of high alpha activity. Environmental Geochemistry and Health, 30, 79–86.

    Article  CAS  Google Scholar 

  8. Guzmáản, E. T. R., Regil, O., Gutiérrez, L. R., Alberich, M. V., Hernández, A. R., & Regil, O. (2006). Contamination of corn growing areas due to intensive fertilization in the high plane of Mexico. Water, Air, & Soil Pollution, 175, 77–98.

    Article  CAS  Google Scholar 

  9. Harmsen, K., & De Haan, F. A. M. (1980). Occurrence and behaviour of uranium and thorium in soil and water. Netherlands Journal of Agricultural Science, 28, 40–62.

    CAS  Google Scholar 

  10. Huang, J. W., Blaylock, M. J., Kapulnik, Y., & Ensley, B. D. (1998). Phytoremediation of Uranium-Contaminated Soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environmental Science and Technology, 32(13), 2004–2008.

    Article  CAS  Google Scholar 

  11. Ibrahim, S. A., & Whicker, F. W. (2005). Comparative plant uptake and environmental behavior of U-series radionuclides at a uranium mine-mill. Journal of Radioanalytical and Nuclear Chemistry, 156, 253–267.

    Google Scholar 

  12. ICRP (International Commission on Radiological Protection), (1993). ICRP (International Commission on Radiological Protection), Age-dependent dose to member of the public from intake of radionuclides. Part II. Publication-67, Oxford: Pergamon.

  13. Jones, K. C., Lepp, N. W., & Obbard, J. P. (1990). Other metals and metalloids. In: B. J. Alloway (Ed.), Heavy metals in soils (pp. 280–321). Blackie, Glasgow.

  14. Kabata-Pendias, A., & Pendias, H. (1986). Trace elements in soils and plants. Boca Raton, FL: CRC.

    Google Scholar 

  15. Lewandowski, H. (1978). Radiochemical and chemical analysis of environmental and biological samples. Central Laboratory for Radiological Protection, Inst. Of Nucl. Rsch.(Eds), Warsaw.

  16. Mitchell, N. T. (1974). Transfer of radionuclides to man through environmental pathways, Proceedings of seminar on population dose evaluation and standards for man and his environment, Portovoz, IAEA-SM-184/105, 486–499, May.

  17. Mortvedit, J. J. (1994). Plant and soil relationships of uranium and thorium decay series radionuclides—a review. Journal of Environmental Quality, 23, 643–650.

    Google Scholar 

  18. Phillippi, J. M., Loganathan, V. A., McIndoe, J. M., Barnett, M. O., Prabhakar Clement, T. P., & Roden, E. (2007). Theoretical solid/solution ratio effects on adsorption and transport: Uranium(VI) and Carbonate. Soil Science Society of America Journal, 71, 329–335.

    Article  CAS  Google Scholar 

  19. Rotbaum, H. P., McGaveston, D. A., Wall, T., Johnston, A. E., & Mattingly, G. E. G. (1979). Uranium accumulated in soil from long-continued applications of super phosphate. Journal of Soil Science, 30, 147–153.

    Article  Google Scholar 

  20. Salt, D. E., & Kramer, U. (2000). Mechanisms of metal hyperaccumulation in plants. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: using plants to clean-up the environment (pp. 231–246). New York: Wiley.

    Google Scholar 

  21. Sarić, M., Stojanović, M., & Babić, M. (1995). Uranium in plant species grown of natural barren soil. Journal of Plant Nutrition, 18, 1509–1518.

    Article  Google Scholar 

  22. Sarić, M., Stojanović, M., Babić, M., Čonkić, Lj., & Bikit, I. (1996). Concentration of uranium in root-crops, bulbous and tuberous plant. Acta Hortculturae, 462, 543–549.

    Google Scholar 

  23. Shahandeh, H., & Hossner, L. R. (2002). Role of soil properties in phytoaccumulation of uranium. Water, Air, & Soil Pollution, 141(1–4), 165–180.

    Article  CAS  Google Scholar 

  24. Sheard, J. W. (1986). Distribution of uranium series radionuclides in upland vegetation of northern Saskatchewan. II. Patterns of accumulation among species and localities. Canadian Journal of Botany, 64, 2453–2463.

    CAS  Article  Google Scholar 

  25. Sheppard, S. C., Evenden, W. G., & Pollock, R. J. (1989). Uptake by plants and migration of uranium and chromium in fiels lysimeters. Journal of Environmental Quality, 13, 357–361.

    Google Scholar 

  26. Sheppard, M. I., Sheppard, S. C., & Thibauit, D. H. (1984). Uptake by plants and migration of uranium and crhomium in fild lysimeters. Journal of Environmental Quality, 13, 358–361.

    Article  Google Scholar 

  27. Stojanović, M. (Eds.) (2006b). Radionuclide contamination of Serbian soil and remediarion possibility. Belgrade: Institute for Technology of Nuclear and Other Mineral raw Materials.

  28. Stojanović, M., Mrdaković-Popić, J., Stevanović, D., & Martinović, Lj. (2006a). Phosphorus fertilizers as source of uranium in Serbian soils. Agronomy for Sustainable Development, 26, 179–183.

    Article  CAS  Google Scholar 

  29. Stojanovic, M., Saric, M. R., Babic, M., & Iles, D. (1995). Uranium concentration in perennial vood plants growing in wicinity of closen down uranium mine in Kalna.(Paper presented at I Regional Symposium: Chemistry and the environment Proceedings II. Vrnjacka Banja. 1007–1010), October.

  30. Straczek, A., Dams, J. & Vandenhove, H. (2006). Uranium in the environment mining impact and consequences. Uranium in Environment, 525–530.

  31. Till, J. E., & Moore, R. E. (1988). A pathway analysis approach for determining acceptable level of contamination of radionuclides in soil. Health Physics, 55, 541–548.

    CAS  Google Scholar 

  32. Tome, F. V., Blanco, M. P., & Lozano, J. C. (2003). Soil-to-plant transfer factors for natural radionuclides and stable elements in a Mediterranean area. Journal of Environmental Radioactivity, 65, 161–175.

    Article  Google Scholar 

  33. Zafrir, H., Waisel, Y., Agami, M., Kronfeld, J., & Mazor, E. (1992). Uranium in plants of southern Sinai. Journal of Arid Environment, 22, 363–368.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mirjana Stojanović.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stojanović, M., Stevanović, D., Iles, D. et al. The Effect of the Uranium Content in the Tailings on Some Cultivated Plants. Water Air Soil Pollut 200, 101–108 (2009). https://doi.org/10.1007/s11270-008-9896-4

Download citation

Keywords

  • Uranium
  • Distribution
  • Corn
  • Sunflower
  • Green peas
  • Root
  • above-ground parts
  • Tailing