Abstract
The present study aimed to elucidate the atmosphere–forest exchange of ammoniacal nitrogen (NHX-N) at a young larch ecosystem. NHX-N exchanges were measured at a remote site in northernmost Japan where 4-year-old larches were growing after a pristine forest had been clear-cut and subsequent dense dwarf bamboo (Sasa) had been strip-cut. The site was a clean area for atmospheric ammonia with mean concentrations of 0.38 and 0.11 μg N m−3 in snowless and snow seasons, respectively. However, there was a general net emission of NHX-N. The annual estimated emission of NHX-N of 4.8 kg N ha−1 year−1 exceeded the annual wet deposition of 2.4 kg N ha−1 year−1, but the weekly exchange fluxes may have been underestimated by 28–60%. The main cause of the ammonia loss from the young larch ecosystem was probably enhanced nitrogen supply stimulated by the cutting of the pristine forest and Sasa, in particular, the Sasa.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Andersen, H. V., Hovmand, M. F., Hummelshoj, P., & Jensen, N. O. (1999). Measurements of ammonia concentrations, fluxes and dry deposition velocities to a spruce forest 1991–1995. Atmospheric Environment, 33, 1367–1383. doi:10.1016/S1352-2310(98)00363-X.
Asman, W. A. H., Sutton, M. A., & Schjoerring, J. K. (1998). Ammonia: emission, atmospheric transport and deposition. The New Phytologist, 139, 27–48. doi:10.1046/j.1469-8137.1998.00180.x.
Bardouki, H., Liakakou, H., Economou, C., Sciare, J., Smolík, J., Ždímal, V., et al. (2003). Chemical composition of size-resolved atmospheric aerosols in the eastern Mediterranean during summer and winter. Atmospheric Environment, 37, 195–208. doi:10.1016/S1352-2310(02)00859-2.
Campbell, G. S., & Norman, J. M. (1998). An introduction to environmental biophysics (2nd ed., p. 286). New York: Springer.
Cape, J. N., Sheppard, L. J., Binnie, J., & Dickinson, A. L. (1998). Enhancement of the dry deposition of sulphur dioxide to a forest in the presence of ammonia. Atmospheric Environment, 32, 519–524. doi:10.1016/S1352-2310(97)00202-1.
Clarke, J. F., Edgerton, E. S., & Martin, B. E. (1997). Dry deposition calculations for the Clean Air Status and Trends Network. Atmospheric Environment, 31, 3667–3678. doi:10.1016/S1352-2310(97)00141-6.
Denmead, O. T. (1994). Measuring fluxes of greenhouse gases between rice fields and the atmosphere. In S. Peng, et al. (Eds.), Climate change and rice (pp. 15–29). Berlin: Springer.
EANET. (2000). Technical manual for wet deposition monitoring in East Asia. 68p. http://www.eanet.cc/product.html.
EANET. (2001). Quality assurance/quality control (QA/QC) program for the air concentration monitoring in East Asia. 25p. http://www.eanet.cc/product.html.
EMEP. (1996). EMEP manual for sampling and chemical analysis. EMEP/CCC-Report 1/95.
EPA (US Environmental Protection Agency). (1999). Determination of reactive acidic and basic gases and strong acidity of atmospheric fine particles (<2.5 μm), EPA/625/R-96/010a.
FAO-UNESCO-ISRIC (1998). World reference base for soil resources. World soil resources reports, 84, 88p. Rome: FAO.
Farquhar, G. D., Firth, P. M., Wetselaar, R., & Weir, B. (1980). On the gaseous exchange of ammonia between leaves and the environment: determination of the ammonia compensation point. Plant Physiology, 66, 710–714.
Fukuzawa, K. (2007). The role of fine roots in carbon and nitrogen dynamics in a cool-temperate forest covered with Sasa dwarf bamboo (pp. 104). Graduate School of Agriculture, Hokkaido University, (in Japanese).
Fukuzawa, K., Shibata, H., Takagi, K., Nomura, M., Kurima, N., Fukazawa, T., et al. (2006). Effects of clear-cutting on nitrogen leaching and fine root dynamics in a cool-temperate forested watershed in northern Japan. Forest Ecology and Management, 225, 257–261. doi:10.1016/j.foreco.2006.01.001.
Gessler, A., Rienks, M., & Rennenberg, H. (2002). Stomatal uptake and cuticular adsorption contribute to dry deposition of NH3 and NO2 to needles of adult spruce (Picea abies) trees. The New Phytologist, 156, 179–194. doi:10.1046/j.1469-8137.2002.00509.x.
Hansen, B., Nørnberg, P., & Rasmussen, K. R. (1998). Atmospheric ammonia exchange on a heathland in Denmark. Atmospheric Environment, 32, 461–464. doi:10.1016/S1352-2310(97)00201-X.
Harazono, Y., & Miyata, A. (1997). Evaluation of greenhouse gas fluxes over agricultural and natural ecosystems by means of micrometeorological methods. Journal of Agricultural Meteorology, 52, 477–480.
Hayashi, K., Komada, M., & Miyata, A. (2007). Atmospheric deposition of reactive nitrogen on turf grassland in central Japan: Comparison of the contribution of wet and dry deposition. Water Air and Soil Pollution Focus, 7, 119–129. doi:10.1007/s11267-006-9096-4.
Hayashi, K., Nishimura, S., & Yagi, K. (2008). Ammonia volatilization from a paddy field following applications of urea: rice plants are both an absorber and an emitter for atmospheric ammonia. The Science of the Total Environment, 390, 486–495. doi:10.1016/j.scitotenv.2007.10.037.
Hayashi, K., Noguchi, I., Ohizumi, T., Aikawa, M., Kitamura, M., Takahashi, A., et al. (2006). Key features of wet deposition in Japan: results of the Japanese acid deposition survey for 20 years. IGACtivities Newsletter of the International Global Atmospheric Chemistry Project, 33, 2–6.
Husted, S., & Schjoerring, J. K. (1996). Ammonia flux between oilseed rape plants and the atmosphere in response to changes in leaf temperature, light intensity, and air humidity: interactions with leaf conductance and apoplastic NH4 + and H+ concentrations. Plant Physiology, 112, 67–74.
Keck, L., & Wittmaack, K. (2005). Effect of filter type and temperature on volatilisation losses from ammonium salts in aerosol matter. Atmospheric Environment, 39, 4093–4100. doi:10.1016/j.atmosenv.2005.03.029.
Kielland, K., Olson, K., Ruess, R. W., & Boone, R. D. (2006). Contribution of winter processes to soil nitrogen flux in taiga forest ecosystems. Biogeochemistry, 81, 349–360. doi:10.1007/s10533-006-9045-3.
Koike, T., Hojyo, H., Naniwa, A., Ashiya, D., Sugata, S., Sugishita, Y., et al. (2001). Basic data of the study site for CO2 flux monitoring of a young larch plantation located in the border between northern Japan and Far East Russia: current status of a mature mixed conifer–hardwood forest stand. Eurasian Journal of Forest Research, 2, 65–79.
Kruit, R. J. W., van Pul, W. A. J., Otjes, R. P., Hofschreuder, P., Jacobs, A. F. G., & Holtslag, A. A. M. (2007). Ammonia fluxes and derived canopy compensation points over non-fertilized agricultural grassland in The Netherlands using the new gradient ammonia—high accuracy—monitor (GRAHAM). Atmospheric Environment, 41, 1275–1287. doi:10.1016/j.atmosenv.2006.09.039.
Langford, A. O., & Fehsenfeld, F. C. (1992a). The role of natural vegetation as a source or sink for atmospheric ammonia: A case study. Science, 255, 581–583. doi:10.1126/science.255.5044.581.
Langford, A. O., Fehsenfeld, F. C., Zachariassen, J., & Schimel, D. S. (1992b). Gaseous ammonia fluxes and background concentrations in terrestrial ecosystems of the United States. Global Biogeochemical Cycles, 6, 459–483. doi:10.1029/92GB02123.
Loubet, B., Milford, C., Hill, P. W., Tang, Y. S., Cellier, P., & Sutton, M. A. (2002). Seasonal variability of apoplastic NH4 + and pH in an intensively managed grassland. Plant and Soil, 238, 97–110. doi:10.1023/A:1014208926195.
Magnani, F., Mencuccini, M., Borghetti, M., Berbigier, P., Berninger, F., Delzon, S., et al. (2007). The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447, 848–852. doi:10.1038/nature05847.
Milford, C., Sutton, M. A., Allen, A. G., Karlsson, A., Davison, B. M., James, J. D., et al. (2000). Marine and land-based influences on atmospheric ammonia and ammonium over Tenerife. Tellus, 52B, 273–289.
Miyata, A., Leuning, R., Denmead, O. T., Kim, J., & Harazono, Y. (2000). Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agricultural and Forest Meteorology, 102, 287–303. doi:10.1016/S0168-1923(00)00092-7.
Neirynck, J., & Ceulemans, R. (2008). Bidirectional ammonia exchange above a mixed coniferous forest. Environmental Pollution, 154, 424–438. doi:10.1016/j.envpol.2007.11.030.
Oren, R., Ellsworth, D. S., Johnsen, K. H., Phillipsk, N., Ewers, B. E., Maier, C., et al. (2001). Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature, 411, 469–472. doi:10.1038/35078064.
Perrino, C., Desantis, F., & Febo, A. (1990). Criteria for the choice of a denuder sampling technique devoted to the measurement of atmospheric nitrous and nitric-acids. Atmospheric Environment, 24A, 617–626.
Pryor, S. C., Barthelmie, R. J., Sorensen, L. L., & Jensen, B. (2001). Ammonia concentrations and fluxes over a forest in the midwestern USA. Atmospheric Environment, 35, 5645–5656. doi:10.1016/S1352-2310(01)00259-X.
Saari, A., Martikainen, P. J., Ferm, A., Ruuskanen, J., de Boer, W., Troelstra, S. R., et al. (1997). Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with different soil texture and atmospheric nitrogen deposition. Soil Biology & Biochemistry, 29, 1625–1632. doi:10.1016/S0038-0717(97)00085-0.
Stevens, C. J., Dise, N. B., Mountford, J. O., & Gowing, D. J. (2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876–1879. doi:10.1126/science.1094678.
Takagi, K., Nomura, M., Ashiya, D., Takahashi, H., Sasa, K., Fujinuma, Y., et al. (2005a). Dynamic carbon dioxide exchange through snowpack by wind-driven mass transfer in a conifer-broadleaf mixed forest in northernmost Japan. Global Biogeochemical Cycles, 19, GB2012. doi:10.1029/2004GB002272.
Takagi, K., Nomura, M., Fukuzawa, K., Kayama, M., Shibata, H., Sasa, K., et al. (2005b). Deforestation effects on the micrometeorology in a cool-temperate forest in northern Japan. Journal of Agricultural Meteorology, 60, 1025–1028.
van der Gon, H. D., & Bleeker, A. (2005). Indirect N2O emission due to atmospheric N deposition for the Netherlands. Atmospheric Environment, 39, 5827–5838. doi:10.1016/j.atmosenv.2005.06.019.
van Oss, R., Duyzer, J. H., & Wyers, P. (1998). The influence of gas-to-particle conversion on measurements of ammonia exchange over forest. Atmospheric Environment, 32, 465–471. doi:10.1016/S1352-2310(97)00280-X.
Zimmermann, F., Plessow, K., Queck, R., Bernhofer, C., & Matschullat, J. (2006). Atmospheric N- and S-fluxes to a spruce forest—Comparison of inferential modelling and the throughfall method. Atmospheric Environment, 40, 4782–4796. doi:10.1016/j.atmosenv.2006.03.056.
Acknowledgements
This research was implemented by the collaboration of Hokkaido University, the National Institute for Environmental Studies, and the Hokkaido Electric Power, through the project “CC-LaG Experiment,” and partly supported through a project (5–2) of the Research Institute for Humanity and Nature, Japan. We would like to express our appreciation to Mr. Ko Inukai and the staff members of the Teshio Experimental Forest for their support of this research and to Dr. Kazuhide Matsuda, Meisei University, for his helpful advice on the analysis of the atmospheric concentrations and the exchange fluxes.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hayashi, K., Takagi, K., Noguchi, I. et al. Ammonia Emission from a Young Larch Ecosystem Afforested after Clear-Cutting of a Pristine Forest in Northernmost Japan. Water Air Soil Pollut 200, 33–46 (2009). https://doi.org/10.1007/s11270-008-9891-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11270-008-9891-9


