Skip to main content
Log in

Ash Leaching of Forest Species Treated with Phosphate Fire Retardants

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The chemical, mineralogical, and leaching behavior of three dominant Greek forest species ashes (Pinus halepensis, Pistacia lentiscus, and Olea europaea), before and after treating forest species with diammonium phosphate (DAP) 5% and 10% weight to weight, have been studied using a new five-step shake leaching method at pH = 6. For the analysis of ashes (prior and after leaching) and leachants, the following analytical techniques were used: atomic absorption spectroscopy, X-ray diffraction, and scanning electron microscopy with energy dispersive X-ray fluorescence analysis. The presence of DAP obstructs the extraction process of some metal ions (i.e., Na, K) contained in ashes by converting the soluble carbonate salts to the less soluble phosphates (i.e., Na2CO3 → Na3PO4). On the contrary, DAP enhances the mobility of some other metals (i.e., Ca) by forming more soluble compounds [i.e., CaCO3 → Ca3(PO4)2]. In addition, the presence of DAP lowers the pH of leachates, causing dissolution of some toxic elements (i.e., Mn, Pb, Zn). Unexpectedly, DAP prevents the leachability of Cr from ash. The above study concerns the environmental effects (soil and ground and underground water streams) caused by the use of chemical retardants on forest fires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • ASTM D1102–84. (2001). Standard test method for ash in wood.

  • ASTM D 3987 – 85. (2004). Standard test method for shake extraction of solid wastes with water.

  • Bradstock, R., Sanders, J., & Tegart, A. (1987). Short-term effects on the foliage of a eucalypt forest after an aerial application of a chemical fire retardant. Australian Forestry, 50(2), 71–80.

    Google Scholar 

  • Campbell, A. G. (1990). Recycling and disposing of wood ash. Tappi Journal, 73, 141–145.

    CAS  Google Scholar 

  • Chirenje, T., Rivero, C., & Ma, L. Q. (2002). Leaching of As and Cr in wood-ash-amended soil columns. Soil and Sediment Contamination, 11(3), 359–375. doi:10.1080/20025891106790.

    Article  CAS  Google Scholar 

  • Demeyer, A., Voundi Nkana, J. C., & Verloo, M. G. (2001). Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresource Technology, 77, 287–295. doi:10.1016/S0960–8524(00)00043–2.

    Article  CAS  Google Scholar 

  • Dimitrakopoulos, A. P., & Panov, P. I. (2001). Pyric properties of some Mediterranean vegetation species. International Journal of Wildland Fire, 10, 23–27. doi:10.1071/WF01003.

    Article  Google Scholar 

  • DIN 38 414, Teil 4. (1984). Bestimmung der Eluierbarkeit mit Wasser (S4). Deutsch Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung. Schlamm und Sedimente (Gruppe S.).

  • Etiégni, L., & Campbell, G. (1991). Physical and chemical characteristics of wood ash. Bioresource Technology, 37, 173–178. doi:10.1016/0960–8524(91)90207-Z.

    Article  Google Scholar 

  • Fallman, A. M., & Aurell, B. (1986). Leaching tests for environmental assessment of inorganic substances in wastes. The Science of the Total Environment, 178, 71–84. doi:10.1016/0048–9697(95)04799–9.

    Google Scholar 

  • Giménez, A., Pastor, E., Zárate, L., Planas, E., & Arnaldos, J. (2004). Long-term forest fire retardants: a review of quality, effectiveness, application and environmental considerations. International Journal of Wildland Fire, 13, 1–15. doi:10.1071/WF03001.

    Article  Google Scholar 

  • Hage, J. L. T., & Mulder, E. (2004). Preliminary assessment of three new European leaching tests. Waste Management (New York, N.Y.), 24, 165–172. doi:10.1016/S0956–053X(03)00129–6.

    CAS  Google Scholar 

  • Hardy, C. E. (1977). Chemicals for forest fire fighting. Boston: National Fire Protection Association.

    Google Scholar 

  • Kalabokidis, K. (2000). Effects of wildfire suppression chemicals on people and the environment—a review. Global Nest. International Journal, 2, 129–137.

    Google Scholar 

  • Lide, D. R. (2007). Handbook of chemistry and physics (88th ed.). Boca Raton: CRC/Taylor & Francis.

    Google Scholar 

  • Liodakis, S., Antonopoulos, I., Agiovlasitis, I. P., & Kakardakis, T. (2008). Testing the fire retardancy of Greek minerals hydromagnesite and huntite on WUI forest species Phillyrea latifolia L. Thermochimica Acta, 469, 43–51. doi:10.1016/j.tca.2007.12.010.

    Article  CAS  Google Scholar 

  • Liodakis, S., Bakirtzis, D., & Dimitrakopoulos, A. P. (2003). Autoignition and thermogravimetric analysis of forest species treated with fire retardants. Thermochimica Acta, 399, 31–42. doi:10.1016/S0040–6031(02)00400–8.

    Article  CAS  Google Scholar 

  • Liodakis, S., Katsigiannis, G., & Kakali, G. (2005). Ash properties of some dominant Greek forest species. Thermochimica Acta, 437, 158–167. doi:10.1016/j.tca.2005.06.041.

    Article  CAS  Google Scholar 

  • Liodakis, S., Katsigiannis, G., & Lymperopoulou, T. (2007). Ash properties of Pinus halepensis needles treated with diammonium phosphate. Thermochimica Acta, 453, 136–146. doi:10.1016/j.tca.2006.11.022.

    Article  CAS  Google Scholar 

  • Ludwig, B., Khanna, P., Prenzel, J., & Beese, F. (2005). Heavy metal release from different ashes during serial batch tests using water and acid. Waste Management (New York, N.Y.), 25, 1055–1066. doi:10.1016/j.wasman.2005.01.007.

    CAS  Google Scholar 

  • Nurmi, J., & Hillebrand, K. (2007). The characteristics of whole—tree fuel stocks from silvicultural cleanings and thinnings. Biomass and Bioenergy, 31(6), 381–392. doi:10.1016/j.biombioe.2007.01.010.

    Article  Google Scholar 

  • Pappa, A., Tzamtzis, N., & Koufopoulou, S. (2006). Effect of fire retardant application on phosphorus leaching from Mediterranean forest soil: short-term laboratory-scale study. International Journal of Wildland Fire, 15, 287–292. doi:10.1071/WF05002.

    Article  CAS  Google Scholar 

  • Pappa, A. A., Tzamtzis, N. E., & Koufopoulou, S. E. (2008). Nitrogen leaching from a forest soil exposed to fire retardant with and without fire: A laboratory study. Annals of Forest Science, 65, 210. doi:10.1051/forest:2007093.

    Article  Google Scholar 

  • Saikia, N., Sakaguchi, Y., Kato, S., & Kojima, T. (2006). Composition and leaching behaviours of combustion residues. Fuel, 85, 264–271. doi:10.1016/j.fuel.2005.03.035.

    Article  CAS  Google Scholar 

  • Voundi Nkana, J. C., Demeyer, A., & Verloo, M. G. (1998). Chemical effects of wood ash on plant growth in tropical acid soils. Bioresource Technology, 63, 251–260. doi:10.1016/S0960–8524(97)00134-X.

    Article  CAS  Google Scholar 

  • Voundi Nkana, J. C., Demeyer, A., & Verloo, M. G. (2002). Effect of wood ash application on soil solution chemistry. Bioresource Technology, 85, 323–325. doi:10.1016/S0960–8524(02)00140–2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stylianos Liodakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liodakis, S., Tsoukala, M. Ash Leaching of Forest Species Treated with Phosphate Fire Retardants. Water Air Soil Pollut 199, 171–182 (2009). https://doi.org/10.1007/s11270-008-9869-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9869-7

Keywords