Water, Air, and Soil Pollution

, Volume 199, Issue 1–4, pp 123–137 | Cite as

Soil Contamination From Tannery Wastes with Emphasis on the Fate and Distribution of Tri- and Hexavalent Chromium

  • Khaled Mahmud Shams
  • Gottfried Tichy
  • Manfred Sager
  • Thomas Peer
  • Ashtar Bashar
  • Marija Jozic


Industrial wastes generated from tanneries located in the southwestern part of Dhaka, pose serious threat to the environment. Surface accumulation of trivalent chromium reaching as high as 28,000 mg/kg have been encountered at 1 km distance from the waste lagoon. In contrast, maximum concentration of hexavalent chromium is about 1 mg/kg, and is very irregularly distributed all over the area. Although soil pH is alkaline in general, a sharp drop of pH down to 3.4 has been observed at some locations. Furthermore, high chloride (Cl) and lead (Pb) concentrations pose risk for city’s groundwater quality, of which Pb is vulnerable for any chelate-assisted phytoremediation as it can enhance its mobility. Scanning electron microscope study showed chromium within the structure of clay minerals, mainly illite–smectite, and also as chlorite–chromian. Presence of lepidocrocite indicates a rather reactive phase which can undergo reductive dissolution and release Cr in the environment.


Chromium Ecosystem Waste lagoon Hazaribagh tannery area Buriganga river 



Author is grateful to the Afro-Asiatische Institute, Salzburg, Austria, for the financial support to carry out this research project. Thanks are also due to Mr. Anwar Zahid, Deputy Director, Bangladesh Water Development Board, and to Tarek Mahmud Shams, for their help during the field sampling in Dhaka Bangladesh in February 2005. Thanks are also due to Dr. Anna Bieniok, Prof. Fritz Finger, and Miss Biljana Starijas for their cooperation for XRD, XRF and SEM analysis.


  1. Armienta, M. A., Rodriguez, R., Ceniceros, N., Juarez, F., & Cruz, O. (1996). Distribution, origin and fate of chromium in soils in Guanajuato, Mexico. Environmental Pollution, 91(3), 39–397. doi: 10.1016/0269-7491(95)00040-2.CrossRefGoogle Scholar
  2. Böhm, B., & Fischer, W. R. (2001). Mechanismus und Geschwindigkeit der Oxidation von Chrom III in Böden. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 96(1), 157–158.Google Scholar
  3. British Geological Survey/Mott MacDonald Ltd. (1999). Groundwater studies for arsenic contamination in Bangladesh. Phase I: Rapid investigation phase. Ministry of Local Government, Rural Development and Cooperatives, Government of the People’s Republic of Bangladesh.Google Scholar
  4. Chen, M. J., & Hao, J. O. (1996). Environmental factors and modelling in microbial chromium (VI) reduction. Water Environment Research, 68, 1156–1164. doi: 10.2175/106143096X128586.CrossRefGoogle Scholar
  5. Elleouet, C., Quentel, F., & Madec, C. (1992). Determination of trace amounts of chromium(VI) in water by electrochemical methods. Analytica Chimica Acta, 257, 301–308. doi: 10.1016/0003-2670(92)85183-7.CrossRefGoogle Scholar
  6. European Commission DG ENV.E3 (2002). Heavy metals in waste, final report, project ENV.E3/ETU/2000/0058. COWI A/S, Denmark.Google Scholar
  7. Förstner, U. (1995). Non-linear release of metals from aquatic sediments. In W. Salomon, & W. M. Stigliani (Eds.), Biogeodynamics of pollutants in soils and sediments, risk assessment of delayed and non-linear responses. Environmental Sciences (Tokyo) (pp. 247–307). Berlin: Springer.Google Scholar
  8. Heron, G., Crouzet, C., Bourg, A. C. M., & Christensen, T. H. (1994). Speciation if Fe(II) and Fe(III) in contaminated aquifer sediments using chemical extraction techniques. Environmental Science & Technology, 28(9), 1698–1705. doi: 10.1021/es00058a023.CrossRefGoogle Scholar
  9. James B. R. (2002). Chemical transformations of chromium in soils: Relevance to mobility, bio-availability and remediation. The Chromium File (N° 8) from the International Chromium Development Association.Google Scholar
  10. Johnson, C. A., & Xyla, A. G. (1991). The oxidation of chromium III to chromium VI on the surface of manganite (γ-MnOOH). Geochimica et Cosmochimica Acta, 55, 2861–2866. doi: 10.1016/0016-7037(91)90451-A.CrossRefGoogle Scholar
  11. Losi, M. E., Amrhein, C., & Frankenberger Jr., W. T. (1994). Bioremediation of chromate-contaminated groundwater by reduction and precipitation in surface soils. Journal of Environmental Quality, 23, 1141–1150.CrossRefGoogle Scholar
  12. McKeague, J. A., & Day, J. H. (1965). Dithionite-and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science, 46, 13–22.CrossRefGoogle Scholar
  13. Nairuzzaman, M., Haque, M. E., & Rahman, M. J. J. (2000). Influence of clay minerals on consolidation behavior of Madhupur clay: A case study from some samples of greater Dhaka City. Bangladesh Geoscience Journal, 6, 135–142.Google Scholar
  14. Nuruzzaman, M., Islam, A., Ullah, S. M., Rashid, M. H., & Gerzabek, M. H. (1998). Contamination of soil environment by the tannery industries. Bangladesh Journal of Soil Science, 25, 1–10.Google Scholar
  15. Oelschläger, W. (1955). Bestimmung kleinster Chromgehalte aus salzsaurer Lösung. Zeitschrift fur Analytische Chemie, 145(2), 81–88. doi: 10.1007/BF00570929.CrossRefGoogle Scholar
  16. Puls, W. R., Clark, A. D., Paul, J. C., & Vardy, J. (1994). Transport and transformation of hexavalent chromium through soils and into ground water. Journal of Soil Contamination, 3(2), 203–204.Google Scholar
  17. Rozan, T. F., Benoit, G., & April, R. H. (1997). A selective dissolution analysis optimized for measurement of weathering products in a soil. Soil Science Society of America Journal, 61, 949–958.Google Scholar
  18. Sager, M. (1998). Zur Bestimmung von Cr(VI) in Düngemitteln, Boden und Kultursubstraten, Mitt. D. Österr. Bodenk Ges, 56, 55–68.Google Scholar
  19. Schubert, D. (1998). Assessment of the environmental release of chemicals from the leather processing industry, Draft IC–07 Leather Processing Industry, Umweltbundesamt IV 2.2-97356/1, 1–11.Google Scholar
  20. Schwertmann, U., Cambier, P., & Murad, E. (1985): Properties of Goethites of Varying Crystallinity. Clays Clay Min., 33, 369–378.CrossRefGoogle Scholar
  21. Schwertmann, U., Schulze, D. G., & Murad, E. (1982). Identification of ferrihydrite in soils by dissolution kinetics, differential x-ray diffraction, and Mössbauer spectroscopy. Soil Science Society of America Journal, 46, 869–875.Google Scholar
  22. Seigneur, C., & Constantinou, E. (1995). Chemical kinetic mechanism for atmospheric chromium. Environmental Science & Technology, 29(1), 222–231. doi: 10.1021/es00001a029.CrossRefGoogle Scholar
  23. Stewart, M. A., Jardine, P. M., Brandt, C. C., Barnett, M. O., Fendorf, S. E., McKay, L. D., et al. (2003). Effects of contaminant concentration, aging, and soil properties on the bioaccessibility of Cr(III) and Cr(VI) in soil. Soil and Sediment Contamination, 12(1), 1–21. doi: 10.1080/713610958.CrossRefGoogle Scholar
  24. Torrent, J., Schwertmann, U., & Schulze, D. G. (1980). Iron oxide mineralogy of some soils of two river terrace sequences in Spain. Geoderma, 23, 191–208. doi: 10.1016/0016-7061(80)90002-6.CrossRefGoogle Scholar
  25. Tzou, M. Y., Wang, K. M., & Loeppert, H. R. (2003). Sorption of phosphate and Cr(VI) by Fe(III) and Cr(III) hydroxides. Archives of Environmental Contamination and Toxicology, 44, 445–453. doi: 10.1007/s00244-002-2090-6.CrossRefGoogle Scholar
  26. UNIDO (2000). Environmental impact assessment (EIA) on the industrial activities at Hazaribagh area, Dhaka (Project - US/RAS/97/137-EIA), Final Report, Government of the Peoples Republic of Bangladesh & United Nations Industrial Development Organization.Google Scholar
  27. Zahid, A., Balke, K. -D., & Hassan, Q. M., Flegr, M. (Eds.) (2004). Distribution of heavy metals in tannery effluent and their influence on sediments of Hazaribagh leather processing zone, Dhaka. Water Resources Management and Development in Dhaka City, Goethe-Institute Dhaka, 89–101.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Khaled Mahmud Shams
    • 1
  • Gottfried Tichy
    • 1
  • Manfred Sager
    • 2
  • Thomas Peer
    • 3
  • Ashtar Bashar
    • 4
  • Marija Jozic
    • 5
  1. 1.Department of Geography and GeologyUniversity of SalzburgSalzburgAustria
  2. 2.AGESViennaAustria
  3. 3.Department of Organism BiologyUniversity of SalzburgSalzburgAustria
  4. 4.Institute of Geotechnical Engineering and Mine SurveyingTU ClausthalClausthal-ZellerfeldGermany
  5. 5.Department of Molecular BiologyUniversity of SalzburgSalzburgAustria

Personalised recommendations