Skip to main content
Log in

Modeling Methane Migration and Oxidation in Landfill Cover Materials with TOUGH2-LGM

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Methane oxidation within a passive methane oxidation barrier (PMOB) and the downward migration of molecular O2, whose presence is necessary for the oxidation reaction to occur, were simulated using the finite element simulator TOUGH2-LGM. The goals of the study were to validate the use of TOUGH2-LGM by reproducing real field profiles obtained under different conditions and to evaluate the depth of O2 penetration under several conditions. TOUGH2-LGM handles both advective and diffusive gas fluxes. The oxidation reaction was simulated by imposing a Neumann condition, i.e. CH4 was extracted from pre-determined elements. The main variables of concern were the degree of water saturation of the PMOB, the pressure differential between its base and the surface, the position and thickness of the oxidation front and, finally, the oxidation rate, i.e. the rate at which CH4 was removed from the system. Other important variables, such as the gas permeability and diffusion coefficient were obtained in the laboratory. Inspection of the results shows that TOUGH2-LGM was able to quite accurately reproduce the field profiles. The simulator also makes it possible to predict the depth of O2 penetration as a function of pressure differential and humidity within the PMOB. This type of information is fundamental for the design of effective biocovers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aachib, M., Mbonimpa, M., & Aubertin, M. (2004). Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers. Water, Air, and Soil Pollution, 156(1), 163–193. doi:10.1023/B:WATE.0000036803.84061.e5.

    Article  CAS  Google Scholar 

  • Allaire, S., Lafond, J., & Cabral, A. R. (2007). Measuring gas diffusion in landfill cover material. In R. Cossu, R. Stegmann, & T. H. Christensen (Eds.), 11th Intern. Waste Mgmt and Landfill Symp. Cagliari, Italy. 1–6 Oct., 2007, CD-Rom.

  • Bear, J., & Bachmat, Y. (1991). Introduction to modeling transport phenomena in porous media. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Berger, J., Fornes, L. V., Ott, C., Jager, J., Wawra, B., & Zanke, U. (2005). Methane oxidation in a landfill cover with capillary barrier. Waste Management, 25(4 SPEC ISS), 369–373.

    Article  CAS  Google Scholar 

  • BNQ. (2005). Organic Soil Conditioners—Composts—Certification Protocol (0413-200/2005), Bureau de normalisation du Québec, Québec.

  • Boeckx, P., & Van Cleemput, O. (2000). Methane oxidation in landfill soils. In Kluwer (Ed.), Trace gas emissions and plants (pp. 197–213). The Netherlands: Kluwer.

  • Boeckx, P., De Visscher, A., & Van Cleemput, O. (1999). Methane oxidation in landfill cover soil: State of the art. Studiedag ‘Stortgas in Vlaanderen’, Pellenberg.

  • Bour, O., Taffoureau, E., & Therrien, R. (2003) Lateral landfill gas migration: Characterisation and preliminary modeling results. In 9th Intl. Waste Management and Landfill Symposium. Vol. Santa Margarita di Pula, Sardinia, Italy, CD.

  • Cabral, A. R., Arteaga, K., Rannaud, D., Aït-Benichou, S., Pouët, M. F., Allaire, S., et al. (2007a). Analysis of methane oxidation and dynamics of methanotrophs within a passive methane oxidation barrier. In 11th International Waste Management and Landfill Symposium. Sta. M. di Pula, Italy. 1–6 Oct., Vol. CD-Rom.

  • Cabral, A. R., Parent, S.-É., & El Ghabi, B. (2007b). Hydraulic aspects of the design of a passive methane oxidation barrier. In 2nd BOKU Waste Conf. Edited by P. Lechner. Vienna. April 16–19, pp. 223–230.

  • Corey, A. T. (1957). Measurement of water and air permeability in unsaturated soil. Soil Science Society of America Proceeding, 1, 7–10.

    Google Scholar 

  • Czepiel, P., Mosher, B., Crill, P., & Harriss, R. (1996). Quantifying the effect of oxidation on landfill methane emissions. Journal of Geophysical Research, 101(11), 16721–16729. doi:10.1029/96JD00222.

    Article  CAS  Google Scholar 

  • Dever, S. A., Swarbrick, G. E., Annett, L., & Stuetz, R. M. (2005). The effect of landfill gas loading on the performance of a passive biofiltration system operating under Australian conditions. In Tenth International Waste Management and Landfill Symposium. 2005. CISA, Vol. Proceedings, CD.

  • De Visscher, A., Thomas, D., Boeckx, P., & Van Cleemput, O. (1999). Methane oxidation in simulated landfill cover soil environments. Environmental Science & Technology, 33(1), 1854–1859. doi:10.1021/es9900961.

    Article  Google Scholar 

  • Galle, B., Samuelsson, J., Svensson, B. H., & Borjesson, G. (2001). Measurements of methane emissions from landfills using a Time Correlation Tracer method based on FTIR absorption spectroscopy. Environmental Science & Technology, 35(1), 21–25. doi:10.1021/es0011008.

    Article  CAS  Google Scholar 

  • Gebert, J., & Gröngröft, A. (2006a). Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane. Waste Management (New York, N.Y.), 26(4), 399–407. doi:10.1016/j.wasman.2005.11.007.

    CAS  Google Scholar 

  • Gebert, J., & Gröngröft, A. (2006b). Passive landfill gas emission—Influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters. Waste Management (New York, N.Y.), 26(3), 245–251. doi:10.1016/j.wasman.2005.01.022.

    CAS  Google Scholar 

  • Gebert, J., Gröngröft, A., & Miehlich, G. (2003). Kinetics of microbial landfill methane oxidation in biofilters. Waste Management (New York, N.Y.), 23(7), 609–619. doi:10.1016/S0956-053X(03)00105-3.

    CAS  Google Scholar 

  • Hettiaratchi, P., & Pokhrel, D. (2003). A New Approach to Quantify Methane Oxidation in a Landfill Bio-Cover: Experience with a Pilot Scale Landfill Test. In 9th Int. Waste Mgmt and Landfill Symp. Sta Margarita di Pula, Italy. October 6–10, p. Paper 485.

  • Hilger, H., & Humer, M. (2003). Biotic Landfill Cover Treatments for Mitigating Methane Emissions. Environmental Monitoring and Assessment, 84(1), 71–84. doi:10.1023/A:1022878830252.

    Article  CAS  Google Scholar 

  • Hilger, H. A., Cranford, D. F., & Barlaz, M. A. (2000). Methane oxidation and microbial exopolymer production in landfill cover soil. Soil Biology & Biochemistry, 32, 457–467. doi:10.1016/S0038-0717(99)00101-7.

    Article  CAS  Google Scholar 

  • Huber-Humer, M., & Lechner, P. (2002). Proper bio-covers to enhance methane oxidation—findings from a two year field trial. In 25th annual Landfill Gas Symposium. Monterey, CA. SWANA (publ. GR-LG-00325), pp. 101–113.

  • Humer, M., & Lechner, P. (2001a). Microbial methane oxidation for the reduction of landfill gas emissions. Journal of Solid Waste Technology and Management, 27, 3–4.

    Google Scholar 

  • Humer, M., & Lechner, P. (2001b). Microorganisms against the greenhouse effect—suitable cover layers for the elimination of methane emissions from landfills. In Proceedings from the Solid Waste Association of North America™ (SWANA). Publication GR-LM-0006. 2001. 6th Annual Landfill Symposium (pp. 305–318), Vol. San Diego, California.

  • IPCC. (2001). Climatic Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Cambridge.

  • IPCC. (2007). Climate Change 2007—The Physical Science Basis. In Contribution of Working Group I to the Fourth Assessment Report of the IPCC. New York: Cambridge University Press.

  • Jury, W. A., Gardner, W. R., & Gardner W. H. (1991). Soil Physics, 5th ed. John Wiley & Sons Inc., NY, ISBN 0-471-83108-5, p. 328.

  • Kallistova, A. Y., Kevbrina, M. V., Nekrasova, V. K., Glagolev, M. V., Serebryanaya, M. I., & Nozhevnikova, A. N. (2005). Methane oxidation in landfill cover soil. Microbiology, 74, 608–614. doi:10.1007/s11021-005-0110-z.

    Article  CAS  Google Scholar 

  • Kjeldsen, P. (1996). Landfill gas migration in soil. Chapter 3.1 (pp. 87–132). In T. H. Christensen, R. Cossu, and R. Stegmann (Eds.), Landfilling of waste: Biogas. E. & FN Spon. London, GB, 840 pages. ISBN: 0 419 19400 2.

  • Lai, S. H., Tiedje, J. M., & Erickson, A. E. (1976). In situ measurement of gas diffusion coefficient in soils. Soil Science Society of America Journal, 40, 3–6.

    CAS  Google Scholar 

  • Maciel, F. J., & Jucá, J. F. T. (2000). Laboratory and filed tests for studying gas flow through MSW landfill cover soil. In C.D. Shackelford, S.L. Houston, and N.-Y. Chang (Eds.) Geotechnical Special Publication number 99 (pp. 569–585) Denver, CO, USA: ASCE.

  • Millington, R. J., & Quirk, J. P. (1961). Permeability of porous solids. Transactions of the Faraday Society, 57, 1200–1207. doi:10.1039/tf9615701200.

    Article  CAS  Google Scholar 

  • Moldrup, P., Olesen, T., Rolston, D. E., & Yamaguchi, T. (1997). Modeling diffusion and reaction in soils: VII. Predicting gas and ion diffusivity in undisturbed and sieved soils. Soil Science, 162, 632–640. doi:10.1097/00010694-199709000-00004.

    Article  CAS  Google Scholar 

  • Morcet, M., Aran, C., Bogner, J., Chanton, J., Spokas, K., & Hebe, I. (2003). Methane mass balance: a review of field results from three French landfill case studies. In Ninth International Waste Management and Landfill Symposium. Sta Margarita di Pula, Italy. 2003. CISA, Vol. Proceedings CD.

  • Nagaraj, T. S., Lutenegger, A. J., Pandian, N. S., & Manoj, M. (2006). Rapid estimation of compaction parameters for field control. Geotechnical Testing Journal, 29(6), 497–506.

    Google Scholar 

  • Nastev, M. (1998). Modeling Landfill Gas Generation and Migration in Sanitary Landfills and Geological Formations. Ph.D. Thesis, Université Laval, 373.

  • Nastev, M., Lefebvre, R., Therrien, R., & Gélinas, P. (2003). Numerical modelling of lateral landfill gas migration. Journal of solid waste technology and management, 29(4), 265–276.

    CAS  Google Scholar 

  • Nolting, B., Gössele, P., Wefer, H., & Bender, M. (1995). Use of water balances for landfill site monitoring. In 5th International Landfill Symposium. Sta Margarita di Pula, Italy. 1995, pp. 263–273.

  • Vigneault, H., Lefebvre, R., & Nastev, M. (2004). Numerical simulation of the radius of influence for landfill gas wells. Vadoze Zone Journal, 3, 909–916.

    Article  CAS  Google Scholar 

  • Zeiss, C. A. (2006). Accelerated methane oxidation cover systems to reduce greenhouse gas emissions from MSW landfills in cold-semi-arid regions. Water, Air, and Soil Pollution, 176, 285–306. doi:10.1007/s11270-006-9169-z.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Cabral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rannaud, D., Cabral, A. & Allaire, S.E. Modeling Methane Migration and Oxidation in Landfill Cover Materials with TOUGH2-LGM. Water Air Soil Pollut 198, 253–267 (2009). https://doi.org/10.1007/s11270-008-9843-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9843-4

Keywords

Navigation