Skip to main content
Log in

Analysis of Coal Ash for Trace Elements and their Geo-environmental Implications

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

This study determined the content of trace elements in coal ash collected from a coal-fired thermal power plant using local coal from Sawarak, Malaysia. This is crucial for the potential impact on the geoenvironment from its disposal and utilization; as coal ash has recently been produced locally in substantial amounts and very limited data is available. The trace elements concentrations presents in coal ashes are compared with the reported coal ash concentrations and the risk for the local wet tropical geoenvironment from the perspective of its vulnerability to these is studied for an indication of potential environmental implications on the wet tropics. The trace elements were found to be in concentrations that, if applied or inadvertently released into the environmental media, present a potential hazard and further necessary research in this regard is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abernethy, R. F., Peterson, M. J., & Gibson, F. H. (1969). Spectrochemical analysis of coal ash for trace elements. U.S. Bureau of Mines. Reports of Investigations, 7281, 30.

    Google Scholar 

  • Adriano, D. C. (1986). Trace elements in the terrestrial environment. New York: Springer.

    Google Scholar 

  • Adriano, D. C., Weber, J., Bolan, N. S., Paramasivam, S., Koo, B., & Sajwan, K. S. (2002). Effects of high rates of coal fly ash on soil, turfgrass and groundwater quality. Water, Air, and Soil Pollution, 139, 365–385. doi:10.1023/A:1015895922471.

    Article  CAS  Google Scholar 

  • Arthur, M. F., Zwick, T. C., Tolle, D. A., & Van Voris, P. (1984). Effects of fly ash on microbial CO2 evolution from agricultural soil. Water, Air, and Soil Pollution, 22, 209–216. doi:10.1007/BF00163101.

    Article  Google Scholar 

  • Ayers, R. U. (1992). Toxic heavy metals: materials cycle optimization. Proceedings of the National Academy of Sciences of the United States of America, 89, 815–820. doi:10.1073/pnas.89.3.815.

    Article  Google Scholar 

  • Baker, D. E., & Chesnin, L. (1975). Chemical monitoring of soils for environmental quality and animal and human health. Advances in Agronomy, 27, 305–337. doi:10.1016/S0065-2113(08)70013-0.

    Article  CAS  Google Scholar 

  • Barnes, I. (2001). Specialty and novel uses of fly ash and fly ash component. In: Proceedings of International Workshop on Novel Products from Combustion Residues: Opportunities and Limitations, June 6–8, Morella, Spain, pp. 23–33.

  • Berrow, M. L., & Reaves, G. A. (1984). In Proceedings of International Conference on Environmental Contamination. CES Consultants, Edinburgh, pp. 334–340.

  • Bowen, H. J. M. (1979). Environmental chemistry of the elements. Toronto: Academic.

    Google Scholar 

  • Bowie, S. H. U., & Thornton, I. (Eds.). (1985). Environmental geochemistry and health. Hingham, MA: Kluwer Academic.

  • Cabrera, J. G., & Woolley, G. R. (1994). Fly ash utilization in civil engineering. Studies in Environmental Science, 60, 345–356. doi:10.1016/S0166-1116(08)71470-5.

    Article  CAS  Google Scholar 

  • Carlson, C. L., & Adriano, D. C. (1993). Environmental impacts of coal combustion residues. Journal of Environmental Quality, 22, 227–247.

    Article  CAS  Google Scholar 

  • Cary, E. E., Wielczorek, G. A., & Allaway, W. H. (1967). Reactions of selenite Se added to soils that produce low-Se forages. Soil Science Society of American Proceedings, 31, 21–26.

    CAS  Google Scholar 

  • Chino, M. (1981). Metal stress in rice plants. In K. Kitagishi, & I. Yamane (Eds.), Heavy metal pollution in the soils of Japan (pp. 65–80). Tokyo: Japan Science Society.

    Google Scholar 

  • Davies, B. E. (1995). Lead. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 206–223). London: Chapman & Hall.

    Google Scholar 

  • Depledge, M. H., Weeks, J. M., & Bjerregaard, P. (1998). Heavy metals. In P. Calow (Ed.), Handbook of toxicology (pp. 543–569). Oxford: Blackwell Science.

    Google Scholar 

  • Doelman, P. (1984). Microbiology of soil and sediments. In W. Salomons, & W. M. Stigliani (Eds.), Biogeodynamics of pollutants in soils and sediments (pp. 31–52). Berlin: Springer.

    Google Scholar 

  • Dojlido, J. R., & Best, G. A. (1993). Chemistry of water and water pollution. New York: Ellis Horwood.

    Google Scholar 

  • Domingo, L. E., & Kyuma, K. (1983). Trace elements in tropical Asian paddy soils. I. Total trace element status. Soil Science and Plant Nutrition, 29(4), 439–452.

    CAS  Google Scholar 

  • Eary, L. E., Rai, D., Mattigold, S. V., & Ainsworth, C. C. (1990). Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: II. Review of the minor elements. Journal of Environmental Quality, 19, 202–214.

    CAS  Google Scholar 

  • Eymael, M., & Cornelissen, H. (1996). Processed pulverized fly ash for high performance concrete. Waste Management (New York, NY), 16, 237–242. doi:10.1016/S0956-053X(96)00063-3.

    CAS  Google Scholar 

  • Ferguson, J., & Gravis, J. (1972). A review of the arsenic cycle in natural waters. Water Research, 6, 1259–1274. doi:10.1016/0043-1354(72)90052-8.

    Article  CAS  Google Scholar 

  • Finkelman, R. B. (1994). Modes of occurrence of potentially hazardous elements in coal: level of confidence. Fuel Processing Technology, 39, 21–34. doi:10.1016/0378-3820(94)90169-4.

    Article  CAS  Google Scholar 

  • Gauglhofer, J., & Bianchi, V. (1991). Chromium. In E. Merian (Ed.), Metals and their compounds in the environment (pp. 853–878). Weinheim and New York: VCH.

    Google Scholar 

  • Giere, R., Carleton, L. E., & Lumpkin, G. R. (2003). Micro-and nanochemistry of fly ash from a coal-fired power plant. The American Mineralogist, 88, 1853–1865.

    CAS  Google Scholar 

  • Gough, L. P., Shacklette, H. T., & Case, A. A. (1979). Element concentrations toxic to plants, animals and man. U.S. Geological Survey Bulletin, 1466, 80.

    Google Scholar 

  • Hansen, Y., Notten, P. J., & Pitrie, J. G. (2002). The environmental impact of ash management in coal-based power generation. Applied Geochemistry, 17, 1131–1141. doi:10.1016/S0883-2927(02)00013-6.

    Article  CAS  Google Scholar 

  • Harrison, R. M., & Laxen, D. P. H. (1981). Lead pollution, causes and control. London: Chapman and Hall.

    Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of chemical characteristics of natural water. U.S. Geological Survey Water-Supply Paper, 3354. U.S. Geological Survey.

  • JCPDS (1994). Powder diffraction file, 44, 7354-CD ROM (PDF 1–44). Pennsylvania, USA: International Centre for Diffraction Data.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1979). Trace elements in the biological environment. Warsaw: Wyd. Geologiczne.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1984). Trace elements in soils and plants. Boca Raton: CRC.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants (2nd ed.). Boca Raton: Lewis.

    Google Scholar 

  • Kharkar, D. P., Turekian, K. K., & Bertine, K. K. (1968). Stream supply of dissolved silver, molybdenum, antimony, selenium, chromium, cobalt, rubidium and cesium to the oceans. Geochimica et Cosmochimica Acta, 32, 285–298. doi:10.1016/0016-7037(68)90016-1.

    Article  CAS  Google Scholar 

  • Kitagishi, K., & Yamane, I. (Eds.). (1981). Heavy metal pollution in soils of Japan (302 p.). Tokyo: Japan Science Society.

  • Kyuma, K. (2004). Paddy soil science. Kyoto: Kyoto University Press.

    Google Scholar 

  • Leonard, A. (1991). Arsenic. In E. Merian (Ed.), Metals in their compounds in the environment (pp. 751–774). Weinheim and New York: VCH.

    Google Scholar 

  • Lindsay, W. L. (1972). Zinc in soils and plant nutrition. Advances in Agronomy, 24, 147–186. doi:10.1016/S0065-2113(08)60635-5.

    Article  CAS  Google Scholar 

  • Luoma, S. N. (1983). Bioavailability of trace metals to aquatic organisms—a review. The Science of the Total Environment, 28, 1–23. doi:10.1016/S0048-9697(83)80004-7.

    CAS  Google Scholar 

  • Mance, G. (1987). Pollution threat of heavy metals in aquatic environments. London: Elsevier.

    Google Scholar 

  • Mattigold, S. V., Rai, D., Eary, L. E., & Ainsworth, C. C. (1990). Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: I. Review of the major elements. Journal of Environmental Quality, 19, 188–201.

    Google Scholar 

  • McGrath, S. P. (1995). Chromium and nickel. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 152–178). London: Blackie Academic and Professional.

    Google Scholar 

  • Meybeck, M. (1982). Carbon, nitrogen and phosphorus transport by world rivers. American Journal of Science, 282, 401–450.

    CAS  Google Scholar 

  • Mohd Annas b. Mohd Nor. (2005). Future coal utilization in Malaysia. In: 2005 APEC Clean Fossil Energy Technical and Policy Seminar, 26–29th January, Cebu City Marriott Hotel, The Philippines.

  • Moore, J., & Ramamoorthy, S. (1984). Heavy metals in natural waters. Berlin: Springer.

    Google Scholar 

  • Natusch, D. F. S., & Taylor, D. R. (1980). Environmental effects of western coal combustion: part IV. In Chemical and Physical Characterization of Coal Fly Ash (Report 600/3-80-093), U.S. Environmental Protection Agency, Washington, DC.)

  • Navas, A. B. B., & Machin, J. (2002). Spatial distribution of heavy metals and arsenic in soils of Aragón (northeast Spain): controlling factors and environmental implications. Applied Geochemistry, 17(8), 961–973. doi:10.1016/S0883-2927(02)00006-9.

    Article  CAS  Google Scholar 

  • Neathery, M. W., & Miller, W. J. (1977). Feedstuff (Aug), 18–20.

  • Nriagu, J. O. (1978). The biogeochemistry of lead in the environment pp. 18–88. Amsterdam: Elsevier/North-Holland Biomedical.

    Google Scholar 

  • Nriagu, J. O. (1980). Nickel in the environment. New York: Wiley.

    Google Scholar 

  • Nugteren, H. W., Jassen-Jurkovicova, M., & Scarlett, B. (2001). Improvement of environmental quality of coal fly ash by applying forced leaching. Fuel, 80, 873–877. doi:10.1016/S0016-2361(00)00163-0.

    Article  CAS  Google Scholar 

  • PECH (1980). Trace-element geochemistry of coal resource development related to environment quality and health. Washington, DC: National Academies.

    Google Scholar 

  • Pederson, A. J., Ottosen, L. M., & Villumsen, A. (2003). Electrodialytic removal of heavy metals from different fly ashes. Journal of Hazardous Materials, 100, 65–78. doi:10.1016/S0304-3894(03)00064-5.

    Article  CAS  Google Scholar 

  • Reijnders, L. (2005). Disposal, uses and treatments of combustion ashes. Resources, Conservation and Recycling, 43, 313–336. Review doi:10.1016/j.resconrec.2004.06.007.

    Article  Google Scholar 

  • Salanki, J., Balogh, K. V., & Berta, E. (1982). Heavy metals in animals of Lake Balaton. Water Research, 16, 1147–1152. doi:10.1016/0043-1354(82)90132-4.

    Article  CAS  Google Scholar 

  • Siegel, F. R. (2002). Environmental geochemistry of potentially toxic metals. Berlin: Springer.

    Google Scholar 

  • Sippola, J. (1979). Selenium content of soils and timothy in Finland. Annales Agriculturae Fenniae, 18, 182.

    CAS  Google Scholar 

  • Standard Methods (1989). For the examination of water and wastewater. Washington, DC: APHA, AWWA, WPCF.

    Google Scholar 

  • Sunderman Jr, F. W., & Oskarsson, A. (1991). Nickel. In E. Merian (Ed.), Metals in their compounds in the environment (pp. 1101–1126). Weinheim and New York: VCH.

    Google Scholar 

  • Swaine, D. J. (1955). The trace element content of soils. Commonwealth Bureau of Soil Science Technical Communication, England, 48, 157 pp.

  • Swaine, D. J. (1990). Trace elements in coal. London: Butterworths.

    Google Scholar 

  • Trefry, J. H., & Presley, B. J. (1976). Heavy metal transport from the Mississippi River to the Gulf of Mexico. In H. L. Windom, & R. A. Duce (Eds.), Marine pollutant transfer (pp. 159–184). Lexington, MA: Lexington Books.

    Google Scholar 

  • Ure, A. M., & Berrow, M. L. (1982). The elemental constituents of soils. In H. J. M. Bowen (Ed.), Environmental chemistry, Vol. 2 (pp. 94–204). London: Royal Society of Chemistry.

    Google Scholar 

  • US EPA (1985). Ambient water quality criteria for copper—1984. Washington DC: U.S. Environmental Protection Agency, Office of Water Regulations and Standards.

    Google Scholar 

  • Vinogradov, A. P. (1959). The geochemistry of rare and dispersed chemical elements in soils. New York: Consultants Bureau.

    Google Scholar 

  • Warren, L. A., & Haack, E. A. (2001). Biogeochemical controls on metal behaviour in freshwater environments. Earth-Science Reviews, 54, 261–320. doi:10.1016/S0012-8252(01)00032-0.

    Article  CAS  Google Scholar 

  • WHO (World Health Organization)–IPCS (International Programme on Chemical Safety) (1988). Chromium, Environmental Health Crit. 61: Arsenic. Geneva: WHO.

    Google Scholar 

  • WHO (1981). Arsenic, Environ. Health Crit. 18: Arsenic. Geneva: International Programme on Chemical Safety.

    Google Scholar 

  • Wood, J. M. (1974). Biological cycles for toxic elements in the environment. Science, 183, 1049–1052. doi:10.1126/science.183.4129.1049.

    Article  CAS  Google Scholar 

  • Wright, D. A., & Welbourn, P. (2002). Environmental toxicology. Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Sejinkat Thermal Power Plant, Kuching, Sarawak, authorities for supplying the coal ash samples. The authors gratefully acknowledge the UNIMAS research centre (RMIC) for the financial support Grant no. 02(51)/459/2004(196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabir Kumar Kolay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, H., Kolay, P.K. Analysis of Coal Ash for Trace Elements and their Geo-environmental Implications. Water Air Soil Pollut 198, 87–94 (2009). https://doi.org/10.1007/s11270-008-9828-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9828-3

Keywords

Navigation