Advertisement

Water, Air, and Soil Pollution

, Volume 198, Issue 1–4, pp 77–85 | Cite as

Distribution of As and Zn in Soils Affected by the Spill of a Pyrite Mine and Effectiveness of the Remediation Measures

  • M. SimónEmail author
  • M. Díez
  • I. García
  • F. Martín
Article

Abstract

The concentrations of As and Zn in 100 georeferenced soils uniformly distributed throughout the area affected by the spill from the Aznalcóllar mine (April 1998) were analysed at three depths (0–10, 10–30, and 30–50 cm) and on four dates (autumn–winter 1998, 1999, 2001, and 2004). For an estimate of the geochemical background, 30 unaffected soils near the edge of the spill were also analysed at the same depths. The soils were contaminated before the spill and, the accident seriously increased the concentration of As and Zn in the first 10 cm of almost all the affected soils. After the enormous efforts of cleaning up the tailings, around 45% of the soils had a concentration higher than 100 mg As kg−1 dry soil, and some 35% had a concentration higher than 1,000 mg Zn kg−1 dry soil. Both As and Zn penetrated between 10 and 30 cm in 25% and 45% of the soils, respectively, but reached 30 cm in only 12% of the soils. The remediation actions, especially the tilling and homogenisation of the uppermost 25 cm of the all soils, caused the As and Zn concentrations to decline in the soils, but this change was not very effective from the standpoint of pollution. Thus, 6 years after the spill, the uppermost 10 cm of 30% of the soils continued to have an As concentration higher than 100 mg As kg−1, while the Zn concentration diminished considerably on the surface due to its greater mobility, accumulating between 10 and 30 cm in depth, where 20% of the soils continued to register more than 1,000 mg Zn kg−1 dry soil.

Keywords

Pyrite mine Soil pollution Arsenic and Zinc Cumulative frequency Remediation 

Notes

Acknowledgments

We express our gratitude to the Science and Innovation Ministry of Spain for supporting this study (Project REN2003-03268). Furthermore, we thank David Nesbitt and Ana Palomares for correcting the English version of the manuscript.

References

  1. Aguilar, J., Dorronsoro, C., Fernández, E., Fernández, J., García, I., Martín, F., & Simón, M. (2004). Soil pollution by a pyrite mine spill in Spain: evolution in time. Environmental Pollution, 132, 395–401.Google Scholar
  2. Almodovar, G. R., Saez, R., Pons, J. M., & Maestre, A. (1998). Geology and genesis of the Aznalcollar massive sulphide deposits, Iberian Pyrite Belt, Spain. Mineralium Deposita, 33, 111–136.Google Scholar
  3. Alastuey, A., García-Sánchez, A., López, F., & Querol, X. (1999). Evolution of pyrite mud weathering and mobility of heavy metals in the Guadiamar valley after the Aznalcóllar spill, south-west Spain. The Science of the Total Environment, 242, 41–55. doi: 10.1016/S0048-9697(99)00375-7.CrossRefGoogle Scholar
  4. Bauer, I., & Bor, J. (1995). Lithogene, geogene, und anthropogene Schwermetallgehalte von Lößböden an den Beispielen von Cu, Zn, Ni, Pb, Hg und Cd. Mainzer Geowiss Mitt, 24, 47–70.Google Scholar
  5. Cabrera, F., Toca, C., Díaz, E., & Arambarri, P. (1984). Acid mine-water and agricultural pollution in a river skirting the Doñana National Park (Guadiamar river, south west Spain). Water Research, 18, 1469–1482. doi: 10.1016/0043-1354(84)90120-9.CrossRefGoogle Scholar
  6. Cabrera, F., Soldevilla, M., Cordón, R., & Arambarri, P. (1987). Heavy metal pollution in the Guadiamar river and the Guadalquivir estuary (south west Spain). Chemosphere, 16, 463–468. doi: 10.1016/0045-6535(87)90254-2.CrossRefGoogle Scholar
  7. Cabrera, F., Clemente, L., Díaz Barrientos, E., López, R., & Murillo, J. M. (1999). Heavy metals pollution of soils affected by the Guadiamar toxic flood. The Science of the Total Environment, 242, 117–129. doi: 10.1016/S0048-9697(99)00379-4.CrossRefGoogle Scholar
  8. Dorronsoro, C., Martín, F., Ortiz, I., García, I., Simón, M., Fernández, E., et al. (2002). Migration of trace elements from pyrite tailings in carbonate soils. Journal of Environmental Quality, 31, 829–835.Google Scholar
  9. Fleischhauer, H. L., & Korte, N. (1990). Formulation of cleanup standards for trace elements with probability plots. Environmental Management (New York), 14, 95–105. doi: 10.1007/BF02394023.Google Scholar
  10. Förstner, U., & Wittmann, G. T. W. (1983). Metal pollution in the aquatic environment. Berlin: Springer.Google Scholar
  11. Galán, E., González, I., & Fernández-Caliani, J. C. (2002). Residual pollution load of soils impacted by the Aznalcóllar (Spain) mining spill after clean-up operations. The Science of the Total Environment, 286, 167–179. doi: 10.1016/S0048-9697(01)00974-3.CrossRefGoogle Scholar
  12. Gills, T. E., & Kane, J. S. (1993). Certificate of analysis, standard reference material 2711. National Institute of Standards and Technology, Gaithersburg, MD.Google Scholar
  13. Kraus, U., & Wiegand, J. (2006). Long-term effects of the Aznalcóllar mine spill—heavy metal content and mobility in soils and sediment of the Guadiamar river valley (SW Spain). The Science of the Total Environment, 367, 855–871.CrossRefGoogle Scholar
  14. Lepeltier, C. (1969). A simplified treatment of geochemical data by graphical representation. Economic Geology and the Bulletin of the Society of Economic Geologists, 64, 538–550.Google Scholar
  15. López-Pamo, E., Barettino, D., Antón-Pacheco, C., Ortiz, G., Arranz, J. C., Gumiel, J. C., et al. (1999). The extent of the Aznalcóllar pyritic spill and its effects on soils. The Science of the Total Environment, 242, 57–88. doi: 10.1016/S0048-9697(99)00376-9.CrossRefGoogle Scholar
  16. Nordstrom, D. K. (1982). Aqueous pyrite oxidation and consequent formation of secondary iron minerals. In J. A Kitrick, D. S. Fanning, & L. R. Hossner (Eds.), Acid sulfate weathering (pp. 37–56). Madison: WI: Soil Sci. Soc. Am.Google Scholar
  17. Ramos, L., Hernández, M., & González, M. J. (1994). Sequential fractionation of copper, lead, cadmium and zinc in soils from or near Doñana National Park. Journal of Environmental Quality, 23, 50–57.CrossRefGoogle Scholar
  18. Reimann, C., Filzmoser, P., & Garret, R. G. (2004). Background and threshold: critical comparison of methods of determination. The Science of the Total Environment, 346, 1–16. doi: 10.1016/j.scitotenv.2004.11.023.Google Scholar
  19. Schermerhorn, L. J. G. (1982). Framework and evolution of hercynian mineralization in the Iberian Meseta. Comun. Serv. Geol. Portugal, 68, 91–140.Google Scholar
  20. Simón, M., Ortiz, I., García, I., Fernández, J., Fernández, E., Dorronsoro, C., et al. (1999). Pollution of soils by the toxic spill of a pyrite mine (Aznalcollar, Spain). The Science of the Total Environment, 242, 105–105. doi: 10.1016/S0048-9697(99)00378-2.CrossRefGoogle Scholar
  21. Simón, M., Martín, F., Ortiz, I., García, I., Fernández, J., Fernández, E., et al. (2001). Soil pollution by oxidation of tailings from toxic spill of a pyrite mine. The Science of the Total Environment, 279, 63–64. doi: 10.1016/S0048-9697(01)00726-4.CrossRefGoogle Scholar
  22. Simón, M., Dorronsoro, C., Ortiz, I., Martín, F., & Aguilar, J. (2002). Pollution of carbonate soils in a Mediterranean climate due to a tailings spill. European Journal of Soil Science, 53, 321–330. doi: 10.1046/j.1365-2389.2002.00435.x.CrossRefGoogle Scholar
  23. Simón, M., Iriarte, A., García, I., Martín, F., Aguilar, J., & Dorronsoro, C. (2005). Mobility of heavy metals in pyritic mine spills from an accident in Aznalcóllar, SW Spain. In A. Faz Cano, R. Ortíz Silla, & A. R. Mermut (Eds.), Advances in Geoecology (vol. 36, (pp. 467–476)). Germany: Catena Verlag.Google Scholar
  24. Stumm, W. Y., & Morgan, J. J. (1981). Aquatic Chemistry: An introduction emphasizing chemical equilibria in natural waters. New York: Wiley.Google Scholar
  25. Tukey, J. W. (1977). Exploratory data analysis. Reading: Addison-Wesley.Google Scholar
  26. Vidal, M., López-Sánchez, J. F., Sastre, J., Jiménez, G., Dagnac, T., Rubio, R., et al. (1999). Prediction of the impact of the Aznalcóllar toxic spill on the trace element contamination of agricultural soils. The Science of the Total Environment, 242, 131–148. doi: 10.1016/S0048-9697(99)00380-0.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Departamento de Edafología y Química Agrícola, EPS CITE IIBUniversidad de AlmeríaAlmeríaSpain
  2. 2.Departamento de Edafología y Química Agrícola, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations