Skip to main content
Log in

Fecal Sterol and Bile Acid Biomarkers: Runoff Concentrations in Animal Waste-Amended Pastures

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Nonpoint source pollution is the leading remaining cause of water quality problems. The extent of NPS pollution is often more difficult or expensive to monitor at the point(s) of origin, as compared to monitoring of point sources. This study evaluated the hypothesis that animal manure (chicken, cow, horse, and pig) applied to pasture contribute fecal sterols and bile acids to runoff. The study also assessed the potential benefit of fecal sterols and bile acids as biomarkers in distinguishing fecal pollution and its sources. Fecal sterol and bile acid concentrations were determined in flow-weighted composite runoff samples collected from 2.4 × 6.1 m plots (n = 3) amended with manure. Runoff was generated from simulated rainfall (152 mm.h−1). Runoff samples from manure-amended plots showed high concentrations of fecal sterol (ranged from 13 ± 1 to 1,287 ± 183) and bile acid (ranged from 24 ± 1 to 2,251 ± 248) biomarkers. The profiles of fecal sterols and bile acids in runoff samples were similar to those of fresh manure for all selected animals. For runoff and fresh manure, chenodeoxycholic acid, deoxycholic acid, epicoprostanol, and hyodeoxycholic acid were consistent biomarkers for chicken, cow, horse, and pig, respectively, suggesting that sterols and bile acids can be used to identify sources and occurrence of fecal matter in water and sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bull, I. D., Elhmmali, M. M., Roberts, D. J., & Evershed, R. P. (2003). The application of steroidal biomarkers to track the abandonment of a Roman wastewater course at the Agora (Athens, Greece). Archaeometry, 45, 149–161. doi:10.1111/1475-4754.00101.

    Article  CAS  Google Scholar 

  • Bull, I. D., Lockheart, M. J., Elhmmali, M. M., Roberts, D. J., & Evershed, R. P. (2002). The origin of faeces by means of biomarker detection. Environment International, 27, 647–654. doi:10.1016/S0160-4120(01)00124-6.

    Article  CAS  Google Scholar 

  • Busheé, E. L., Edwards, D. R., & Moore, P. A. (1998). Quality of runoff from plots treated with municipal sludge and horse bedding. Transactions of the ASAE. American Society of Agricultural Engineers, 41, 1035–1041.

    Google Scholar 

  • Chaler, R., Simoneit, B. R. T., & Grimalt, J. O. (2001). Bile acids and sterols in urban sewage treatment plants. Journal of Chromatography. A, 927, 155–160. doi:10.1016/S0021-9673(01)01086-X.

    Article  CAS  Google Scholar 

  • Elhmmali, M. M., Roberts, D. J., & Evershed, R. P. (1997). Bile acids as a new class of sewage pollution indicator. Environmental Science and Technology, 31, 3663–3668. doi:10.1021/es9704040.

    Article  CAS  Google Scholar 

  • Elhmmali, M. M., Roberts, D. J., & Evershed, R. P. (2000). Combined analysis of bile acids and sterols/stanols from riverine particulates to assess sewage discharges and other fecal sources. Environmental Science and Technology, 34, 39–46. doi:10.1021/es990076z.

    Article  CAS  Google Scholar 

  • Evershed, R. P., & Bethell, P. H. (1996). Application of multimolecular biomarker techniques to the identification of fecal material in archaeological soils and sediments. ACS Symposium Series. American Chemical Society, 625, 157–172.

    Article  CAS  Google Scholar 

  • Haslewood, G. A. D. (1967). Bile salts. London: Methuem.

    Google Scholar 

  • Jarde, E., Gruau, G., Mansuy-Huault, L., Peu, P., & Martinez, J. (2007). Using sterols to detect pig slurry contribution to soil organic matter. Water, Air, and Soil Pollution, 178, 169–178. doi:10.1007/s11270-006-9188-9.

    Article  CAS  Google Scholar 

  • Leeming, R., Ball, A., Ashbolt, N., & Nichols, P. (1996). Using faecal sterols from humans and animals to distinguish faecal pollution in receiving waters. Water Research, 30, 2893–2900. doi:10.1016/S0043-1354(96)00011-5.

    Article  CAS  Google Scholar 

  • Maldonado, C., Venkatesan, M. I., Phillips, C. R., & Bayona, J. M. (2000). Distribution of trialkylamines and coprostanol in San Pedro Shelf sediments adjacent to a sewage outfall. Marine Pollution Bulletin, 40, 680–687. doi:10.1016/S0025-326X(00)00002-3.

    Article  CAS  Google Scholar 

  • Nash, D., Leeming, R., Clemow, L., Hannah, M., Halliwell, D., & Allen, D. (2005). Quantitative determination of sterols and other alcohols in overland flow from grazing land and possible source materials. Water Research, 39, 2964–2978. doi:10.1016/j.watres.2005.04.063.

    Article  CAS  Google Scholar 

  • NRCS (1992). ‘Agricultural waste management field handbook.’. Washington, DC: USDA-NRCS.

    Google Scholar 

  • Peng, X. Z., Zhang, G., Mai, B. X., Hu, J. F., Li, K. C., & Wang, Z. D. (2005). Tracing anthropogenic contamination in the Pearl River estuarine and marine environment of South China Sea using sterols and other organic molecular markers. Marine Pollution Bulletin, 50, 856–865.

    CAS  Google Scholar 

  • Setchell, K. D. R., Lawson, A. M., Tanida, N., & Sjovall, J. (1983). General methods for the analysis of metabolic profiles of bile acids and related compounds in feces. Journal of Lipid Research, 24, 1085–1100.

    CAS  Google Scholar 

  • Simpson, I. A., van Bergen, P. F., Perret, V., Elhmmali, M. M., Roberts, D. J., & Evershed, R. P. (1999). Lipid biomarkers of manuring practice in relict anthropogenic soils. The Holocene, 9, 223–229. doi:10.1191/095968399666898333.

    Article  Google Scholar 

  • Tyagi, P., Edwards, D. R., & Coyne, M. S. (2008). Use of sterol and bile acid biomarkers to identify domesticated animal sources of fecal pollution. Water, Air, and Soil Pollution, 187, 263–274. doi:10.1007/s11270-007-9514-x.

    Article  CAS  Google Scholar 

  • Venkatesan, M. I., & Kaplan, I. R. (1990). Sedimentary coprostanol as an index of sewage addition in Santa-Monica Basin, Southern-California. Environmental Science and Technology, 24, 208–214. doi:10.1021/es00072a009.

    Article  CAS  Google Scholar 

  • Venkatesan, M. I., Ruth, E., & Kaplan, I. R. (1986). Coprostanols in Antarctic marine-sediments—a biomarker for marine mammals and not human pollution. Marine Pollution Bulletin, 17, 554–557. doi:10.1016/0025-326X(86)90569-2.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge the Kentucky Agricultural Experiment Station, University of Kentucky, USA for funding this work; the individuals who collected the fecal and runoff samples, and the associated departments for allowing the fecal samples to be part of this work. John May (lab technician) of ERTL, UKY is thanked for his technical assistance in using GC–MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punam Tyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyagi, P., Edwards, D.R. & Coyne, M.S. Fecal Sterol and Bile Acid Biomarkers: Runoff Concentrations in Animal Waste-Amended Pastures. Water Air Soil Pollut 198, 45–54 (2009). https://doi.org/10.1007/s11270-008-9824-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9824-7

Keywords

Navigation