Removal of Nickel onto Alkali Treated Rice Bran

Abstract

Different bases were used for the pretreatment of Rice bran biomass. Pretreatment with bases such as NaOH, Ca(OH)2 and Al(OH)3 were found to improve biosorption capacity. But in Rice bran, treatment with 0.5 M NaOH increased its nickel selective adsorption ability very much. The main binding site of nickel in NaOH treated cells is assumed to be carboxylic, hydroxyl, sulphate, phosphate and amino groups. The maximum biosorption capacity of Rice bran biomass subjected to 0.5 M NaOH was 198.92 mg g−1. Kinetic and isotherm experiments were carried out at the optimal pH 6.0 for nickel. The Freundlich and Langmuir models were used to describe the uptake of nickel on NaOH pretreated Rice bran. To improve the biosorption capacity for metal ions by biomass, alkali pretreatment is an effective method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Al-Qodah, Z. (2006). Biosorption of heavy metal ions from aqueous solutions by activated sludge. Desalination, 196, 164–176. doi:10.1016/j.desal.2005.12.012.

    Article  CAS  Google Scholar 

  2. Blanco, A. B., Sanz, B., Llama, M. J., & Serra, J. L. (1999). Biosorption of heavy metals to immobilized Phormidium laminesum biomass. Journal of Biotechnology, 69, 227–240. doi:10.1016/S0168-1656(99)00046-2.

    Article  CAS  Google Scholar 

  3. Cetinkaya, G. D., Aksu, Z., Ozturk, A., & Kutsal, T. (1999). A comparative study on heavy metal biosorption characteristics of some algae. Process Biochemistry, 34, 885–892. doi:10.1016/S0032-9592(99)00005-9.

    Article  Google Scholar 

  4. Chen, J. P., & Yiacaumi, S. (1997). Biosorption of metal ions from aqueous solutions. Science & Technologie, 32(1–4), 51–69.

    CAS  Google Scholar 

  5. Chong, K. H., & Volesky, B. (1995). Description of two-metal biosorption equilibria by Langmuir-type models. Biotechnology and Bioengineering, 47(0), 1–10.

    Google Scholar 

  6. Chubar, N., Carvaalho, J. R., & Correia, M. J. N. (2004). Cork biomass as biosorbent for Cu (II), Zn (II) and Ni (II). Colloids and Surfaces, 230, 57–65.

    Google Scholar 

  7. Crist, R. H., Oberholser, K., Shank, N., & Nguyen, M. (1981). Nature of bonding between metallic ions and algal cell walls. Environmental Science & Technology, 15, 1212–1217. doi:10.1021/es00092a010.

    Article  CAS  Google Scholar 

  8. Dilek, F. B. D., Erbay, A., & Yetis, U. (2002). Ni (II) biosorption by Polyporous versicolor. Process Biochemistry, 37, 723–726. doi:10.1016/S0032-9592(01)00261-8.

    Article  CAS  Google Scholar 

  9. Fourest, E., & Roux, J. C. (1992). Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH. Applied Microbiology and Biotechnology, 3, 399–403. doi:10.1007/BF00211001.

    Article  Google Scholar 

  10. Freundlich, H. M. F. (1906). Uber die adsorption in losungen. Zeitschrift fur physikalische Chemie, 57(A), 385–470.

    CAS  Google Scholar 

  11. Gosset, T., Trancart, J. L., & Thevenot, D. R. (1986). Batch metal removal by peat. Kinetics and thermodynamics.. Water Research, 20, 21. doi:10.1016/0043-1354(86)90209-5.

    Article  CAS  Google Scholar 

  12. Hanif, M. A., Nadeem, R., Bhatti, H. N., Ahmad, N. R., & Ansari, T. M. (2007). Ni (II) biosorption by Cassia fistula (Golden shower) biomass. Journal of Hazardous Materials, 139, 345–355. doi:10.1016/j.jhazmat.2006.06.040.

    Article  CAS  Google Scholar 

  13. Hawari, A. H., & Mulligan, C. N. (2006). Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Bioresource Technology, 97, 692–700. doi:10.1016/j.biortech.2005.03.033.

    Article  CAS  Google Scholar 

  14. Ho, Y. S. (1995). Adsorption of heavy metals from waste streams by peat. UK: The University of Birmingham.

    Google Scholar 

  15. Ho, Y. S., & McKay, G. (1999). Pseudo second order model for sorption processes. Process Biochemistry, 34, 451–465. doi:10.1016/S0032-9592(98)00112-5.

    Article  CAS  Google Scholar 

  16. Horsfall, M. J., Abia, A. A., & Spiff, A. I. (2003). Removal of Cu (II) and Zn (II) ions from waste water by Cassava (Manihot esculenta (rang) waste biomass. African Journal of Biotechnology, 210, 360–364.

    Google Scholar 

  17. Houston, D. F. (1972). Rice chemistry and technology. New York: American Association of Cereal Chemists, p. 146.

    Google Scholar 

  18. Huang, J. P., Huang, C. P., & Morehart, A. (1990). The removal of Cu (II) from dilute aqueous solutions by Saccharomyces cerevisiae. Water Research, 24(4), 433–439. doi:10.1016/0043-1354(90)90225-U.

    Article  CAS  Google Scholar 

  19. Iqbal, M., & Saeed, A. (2007). Production of an immobilized hybrid biosorbent for the sorption of Ni(II) from aqueous solution. Process Biochemistry, 42, 148–157. doi:10.1016/j.procbio.2006.07.022.

    Article  CAS  Google Scholar 

  20. Lagergren, S. (1898). Zur theorie der sagenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens Handlinger, 24(4), 1–39.

    Google Scholar 

  21. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38(11), 2221–2295. doi:10.1021/ja02268a002.

    Article  CAS  Google Scholar 

  22. Leusch, L., Holan, Z. R., & Volesky, B. (1995). Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically reinforced biomass of marine algae. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire: 1986), 62(3), 279–288. doi:10.1002/jctb.280620311.

    Article  CAS  Google Scholar 

  23. Liu, M., & Kang, W. (1988). Removal of mercury from wastewater with maize starch dregs. Huanging Kexue, 9(5), 47-48.

    CAS  Google Scholar 

  24. Loaec, M., Olier, R., & Guezennec, J. (1997). Uptake of lead, cadmium and Zinc by a novel bacterial exopolysaccharide. Water Research, 31(5), 1171–1179. doi:10.1016/S0043-1354(96)00375-2.

    Article  CAS  Google Scholar 

  25. Low, K. S., Lee, C. K., & Leo, A. C. (1995). Removal of metals from electroplating wastes using banana pith. Bioresource Technology, 51, 227–231. doi:10.1016/0960-8524(94)00123-I.

    Article  CAS  Google Scholar 

  26. McGahren, W. I., et al. (1984). Chitosan by fermentation. Process Biochemistry, 19, 88–90.

    CAS  Google Scholar 

  27. Mihova, S., & Godjevargova, T. (2001). Biosorption of heavy metals from aqueous solutions. Retrieved from http://www.ejournalistnet.com/Issue1.

  28. Mittleman, M. W., & Geesey, G. G. (1985). Copper binding characteristics of exopolymers from a freshwater sediment bacterium. Applied and Environmental Microbiology, 49, 846–851.

    Google Scholar 

  29. Motanher, S. F., Oliveira, I. E. A., & Rollemberg, M. C. (2005). Removal of metal ions from aqueous solutions by sorption onto rice bran. Journal of Hazardous Materials, 117, 207–211. doi:10.1016/j.jhazmat.2004.09.015.

    Article  Google Scholar 

  30. Muraleedharan, T. R., & Venkobachar, C. (1990). Mechanism of cobalt biosorption. Biotechnology and Bioengineering, 33, 823–831.

    Google Scholar 

  31. Nuhoglu, Y., Malhoc, E., Gurses, A., & Canpolat, N. (2002). The removal of Cu (II) from aqueous solution by Ulothrix zonata. Bioresource Technology, 85, 331–333. doi:10.1016/S0960-8524(02)00098-6.

    Article  CAS  Google Scholar 

  32. Oliveira, E. A., Montanher, S. F., Andrade, A. D., No’brega, J. A., & Rollemberg, M. C. (2005). Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Process Biochemistry, 40, 3485–3490. doi:10.1016/j.procbio.2005.02.026.

    Article  CAS  Google Scholar 

  33. Ou, S., Gao, K., & Li, Y. (1999). An in vitro study of wheat bran binding capacity for Hg, Cd, and Pb. Journal of Agricultural and Food Chemistry, 47, 4714–4717. doi:10.1021/jf9811267.

    Article  CAS  Google Scholar 

  34. Ozturk, A. (2007). Removal of Nickel from aqueous solution by the bacterium Bacillus thuringiensis. Journal of Hazardous Materials, 147, 518–523. doi:10.1016/j.jhazmat.2007.01.047.

    Article  Google Scholar 

  35. Sag, Y., & Kutsal, T. (1996). The selective biosorption of chromium(VI) and copper(II) ions from binary metal mixtures by R. rrhizus. Process Biochemistry, 31, 561–572. doi:10.1016/S0032-9592(95)00100-X.

    Article  CAS  Google Scholar 

  36. Schecher, W. D., McAvoy, D. C. (1992). MINEQL+: A software environment for chemical equilibrium modeling. Computers, Environment and Urban Systems, 16(1), 65-76. doi:10.1016/0198-9715(92)900535-J.

    Article  Google Scholar 

  37. Sharma, D. C., & Forster, C. F. (1994). The treatment of chromium wastewaters using the sorptive potential of leaf mould. Bioresource Technology, 49, 31–40. doi:10.1016/0960-8524(94)90170-8.

    Article  CAS  Google Scholar 

  38. Shukla, S. R., & Pai, R. S. (2005). Adsorption of Cu(II), nickel(II) and Zn(II) on dye loaded groundnut shells and sawdust. Separation and Purification Technology, 43, 1–8. doi:10.1016/j.seppur.2004.09.003.

    Article  CAS  Google Scholar 

  39. Sing, C., & Yu, J. (1998). Copper adsorption and removal from water by living mycelium of white-rot fungus Phanerochaete chrysosporium. Water Research, 32(9), 2746–2752. doi:10.1016/S0043-1354(98)00024-4.

    Article  CAS  Google Scholar 

  40. Srivastava, V. C., Mall, I. D., & Mishra, I. M. (2006). Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash. Chemical Engineering Journal, 117, 79–91. doi:10.1016/j.cej.2005.11.021.

    Article  CAS  Google Scholar 

  41. Tien, C. T., Huang, C. P., & Vernet, J. P. (Eds.).(1991). Trace metals in the environment (p. 295). Amsterdam: Elsevier.

  42. Veglio, F., Beolchini, F., & Gasbarro, A. (1997). Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp. Process Biochemistry, 32, 99–105. doi:10.1016/S0032-9592(96)00047-7.

    Article  CAS  Google Scholar 

  43. Verma, N., & Rheal, R. (1994). Bioscavenging of Cu(II) ions from aqueous solution with ricebran. Bioresource Technology, 49(3), 277–278. doi:10.1016/0960-8524(94)90053-1.

    Article  CAS  Google Scholar 

  44. Volesky, B. (1990). Biosorption and biosorbents. biosorption of heavy metals pp. 3–5. Boston, USA: CRC.

    Google Scholar 

  45. Volesky, B., & Holan, Z. R. (1995). Biosorption of heavy metals. Biotechnology Progress, 11(3), 235–250. doi:10.1021/bp00033a001.

    Article  CAS  Google Scholar 

  46. Wong, J. P. K., Wong, Y. S., & Tam, N. F. Y. (2000). Nickel biosorption by two chlorella species, C. vulgaries (a commercial species) and C. miniata (a local isolate). Bioresource Technology, 73, 33–137. doi:10.1016/S0960-8524(99)00175-3.

    Article  Google Scholar 

  47. Yin, P., Yu, Q., Jin, B., & Ling, Z. (1999). Biosorption removal of cadmium from aqueous solution by using pretreated fungal biomass cultured from starch wastewater. Water Research, 33(8), 1960–1963. doi:10.1016/S0043-1354(98)00400-X.

    Article  CAS  Google Scholar 

  48. Yu, Q., & Kaewsarn, P. (1999). Binary adsorption of copper(II) and cadmium(II) from aqueous solutions by biomass of marine alga Durvillaea potatorum. Science & Technologie, 34(8), 1595–1605 (September).

    CAS  Google Scholar 

  49. Yu, B., Zhang, Y., Shukla, A., Shukla, S. S., & Dorris, K. L. (2000). The removal of heavy metals from aqueous solutions by raw dust biosorption-removal of copper. Journal of Hazardous Materials, 80, 33–42. doi:10.1016/S0304-3894(00)00278-8.

    Article  CAS  Google Scholar 

  50. Zafar, M. N., Nadeem, R., & Hanif, M. A. (2007). Biosorption of nickel from protonated rice bran. Journal of Hazardous Materials, 143, 478–485. doi:10.1016/j.jhazmat.2006.09.055.

    Article  CAS  Google Scholar 

  51. Zhao, M., Duncan, J. R., & Van Hille, R. P. (1999). Removal and recovery of zinc from solution and electroplating effluent using Azolla filiculoides. Water Research, 33(6), 1516–1522. doi:10.1016/S0043-1354(98)00338-8.

    Article  CAS  Google Scholar 

  52. Zouboulis, A. I., Rousou, E. G., Matis, K. A., & Hancock, I. C. (1999). Removal of toxic metals from aqueous mixtures. Part 1. Biosorption. Journal of Chemical Technology and Biotechnology, 74, 429–436. doi:10.1002/(SICI)1097-4660(199905)74:5<429::AID-JCTB62>3.0.CO;2-#.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Nadeem Zafar or Raziya Nadeem.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zafar, M.N., Abbas, I., Nadeem, R. et al. Removal of Nickel onto Alkali Treated Rice Bran. Water Air Soil Pollut 197, 361–370 (2009). https://doi.org/10.1007/s11270-008-9817-6

Download citation

Keywords

  • Biosorption
  • Nickel
  • Rice bran
  • Isotherm
  • Alkali treated
  • Surface morphology