Skip to main content

Advertisement

Log in

Characterizing Uncertainties Associated with Contaminant Transport Modeling through a Coupled Fuzzy-Stochastic Approach

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

A factorial-design-based fuzzy-stochastic modeling system (FFSMS) was developed in this study to systematically investigate impacts of uncertainties associated with hydrocarbon contaminant transport in subsurface through integration of a compositional model, factorial design method, fuzzy modeling approach and Monte Carlo simulation technique. The goodness of fit of the numerical model was analyzed by means of a pilot-scale experimental system. Once the model was calibrated, it was used in order to predict the contaminant concentration depending on values of several parameters including intrinsic permeability, porosity, and longitudinal dispersivity. These parameters were imprecisely known, and such an imprecision was handled by means of both fuzzy sets and/or stochastic theory. The individual and joint effects of these uncertain parameters were analyzed by modeling the dependence between the prediction and the imprecise parameters (factors) through factorial design analysis. The study results indicated that the uncertainties associated with input parameters had significant impacts on modeling outputs; the degree of influence of each model input varied significantly with the level of its imprecision. The study results demonstrated that proposed FFSMS can efficiently analyze the impact of different uncertainty sources associated with different hydrogeological parameters on the prediction of the hydrocarbon concentrations in groundwater. Such studies would provide strong basis for performing successful risk assessment and efficient remediation design for the management of contaminated site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams, R. B. (1995). Uncertainty in the investigation and remediation of contaminated groundwater. Geotechnical Special Publication (ASCE), 46(1), 1–15.

    Google Scholar 

  • Blair, A. N., Ayyub, B. M., & Bender, W. J. (2001). Fuzzy stochastic risk-based decision analysis with the mobile offshore base as a case study. Marine Structures, 14(1), 69–88. doi:10.1016/S0951-8339(00)00027-7.

    Article  Google Scholar 

  • Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters. New York: Wiley.

    Google Scholar 

  • Brown, C. L. (1993). Simulation of surfactant enhanced remediation of aquifers contaminated with dense non-aqueous phase liquids. Ph.D. Dissertation. University of Texas at Austin, Austin, TX.

  • Chen, S. Q. (2000). Comparing probabilistic and fuzzy set approaches for design in the presence of uncertainty. Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.

  • Chen, G., & Pham, T. T. (2001). Introduction to fuzzy sets, fuzzy logic and fuzzy control systems. Boca Raton, FL: CRC.

    Google Scholar 

  • Civanlar, M. R., & Trussel, H. J. (1986). Constructing membership functions using statistical data. Fuzzy Sets and Systems, 18, 1–13. doi:10.1016/0165-0114(86)90024-2.

    Article  Google Scholar 

  • Clement, T. P., Johnson, C. D., Sun, Y. W., Klecka, G. M., & Bartlett, C. (2000). Natural attenuation of chlorinated ethene compounds: model development and field-scale application at the Dover site. Journal of Contaminant Hydrology, 42(2–4), 113–140. doi:10.1016/S0169-7722(99)00098-4.

    Article  CAS  Google Scholar 

  • Delshad, M., Pope, G. A., & Sepehrnoori, K. (1996). A compositional simulator for modeling surfactant enhanced aquifer remediation, 1. formulation. Journal of Contaminant Hydrology, 23(4), 303–327. doi:10.1016/0169-7722(95)00106-9.

    Article  CAS  Google Scholar 

  • Dong, W., & Shah, H. C. (1987). Vertex method for computing functions of fuzzy variables. Fuzzy Sets and Systems, 24, 65–78. doi:10.1016/0165-0114(87)90114-X.

    Article  Google Scholar 

  • Dubois, D., & Prade, H. (1992). When upper probabilities are possibility measures. Fuzzy Sets and Systems, 49, 65–74. doi:10.1016/0165-0114(92)90110-P.

    Article  Google Scholar 

  • Gelhar, L. W. (1993). Stochastic subsurface hydrology. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Guyonnet, D., Bourgine, B., Dubois, D., Fargier, H., Come, B., & Chiles, J. P. (2003). Hybrid approach for addressing uncertainty in risk assessments. Journal of Environmental Engineering, 129(1), 68–78. doi:10.1061/(ASCE)0733-9372(2003)129:1(68).

    Article  CAS  Google Scholar 

  • Hammonds, J. S., Hoffman, F. O., & Bartell, S. M. (1994). An introductory guide to uncertainty analysis in environmental and health risk assessment. Technical Rep. No. ES/ER/TM-35/R1, Oak Ridge National Laboratory, Oak Ridge, TN.

  • Hu, B. X., & Huang, H. (2002). Stochastic analysis of reactive solute transport in heterogeneous, fractured porous media: a dual-permeability approach. Transport in Porous Media, 48, 1–39. doi:10.1023/A:1015671227317.

    Article  CAS  Google Scholar 

  • Huang, G. H. (1998). A hybrid inexact-stochastic water management model. European Journal of Operational Research, 107(1), 137–158. doi:10.1016/S0377-2217(97)00144-6.

    Google Scholar 

  • Huang, G. H., & Xia, J. (2001). Barriers to sustainable water-quality management. Journal of Environmental Management, 61(1), 1-23. doi:10.1006/jema.2000.0394.

    Google Scholar 

  • Kaluarachchi, J. J., Cvetkovic, V., & Berglund, S. (2000). Stochastic analysis of oxygen- and nitrate-based biodegradation of hydrocarbons in aquifers. Journal of Contaminant Hydrology, 41, 335–365. doi:10.1016/S0169-7722(99)00072-s8.

    Article  CAS  Google Scholar 

  • Kentel, E., & Aral, M. M. (2005). 2D Monte Carlo versus 2D fuzzy Monte Carlo health risk assessment. Stochastic Environmental Research and Risk Assessment, 19, 86–96. doi:10.1007/s00477-004-0209-1.

    Article  Google Scholar 

  • Klir, G. J. (1997). The role of constrained fuzzy arithmetic in engineering. In B. M. Ayyub, & M. M. Gupta (Eds.), Uncertainty analysis in engineering and sciences: Fuzzy logic, statistics, and neural network approach (pp. 1–19). Norwell, MA, USA: Kluwer.

    Google Scholar 

  • Lahkim, M. B., & Garcia, L. A. (1999). Stochastic modeling of exposure and risk in a contaminated heterogeneous aquifer, 1: Monte Carlo uncertainty analysis. Environmental Engineering Science, 16(5), 315–328.

    Article  CAS  Google Scholar 

  • Lee, M. (2000). A numerical study of surfactant flushing to remediate NAPL (non-aqueous phase liquid). Water, Air, and Soil Pollution, 121(1–4), 289–307. doi:10.1023/A:1005271026263.

    Article  CAS  Google Scholar 

  • Lenhard, R. J., & Parker, J. C. (1987). Measurement and prediction of saturation-pressure relationships in porous media systems. Journal of Contaminant Hydrology, 1, 407–424. doi:10.1016/0169-7722(87)90017-9.

    Article  CAS  Google Scholar 

  • Li, J. B. (2003). Development of an inexact environmental modeling system for the management of petroleum-contaminated sites. Ph.D. Dissertation, University of Regina, Saskatchewan, Canada.

  • Li, J. B., Huang, G. H., Chakma, A., Zeng, G. M., & Liu, L. (2003). Integrated fuzzy-stochastic modeling of petroleum contamination in subsurface. Energy Sources, 25(6), 547–563. doi:10.1080/00908310303410.

    Article  CAS  Google Scholar 

  • Li, J. B., Liu, L., Huang, G. H., & Zeng, G. M. (2006). A fuzzy-set approach for addressing uncertainties in risk assessment of hydrocarbon-contaminated site. Water, Air, and Soil Pollution, 171(1–4), 5–18. doi:10.1007/s11270-005-9005-x.

    Article  CAS  Google Scholar 

  • Liu, L. (2005). Modeling for surfactant-enhanced groundwater remediation processes at DNAPLs-contaminated sites. Journal of Environmental Informatics 5(2), 42–52. doi:10.3808/jei.200500045.

    Google Scholar 

  • Malliavin, P. (1997). Stochastic analysis. New York: Springer.

    Google Scholar 

  • Maqsood, I. (2004). Development of simulation- and optimization-based decision support methodologies for environmental systems management. Ph.D. Dissertation, University of Regina, Regina, Saskatchewan, Canada.

  • Maqsood, I., Huang, G. H., & Huang, Y. F. (2005). A groundwater monitoring design through site characterization, numerical simulation and statistical analysis – A North American case study. Journal of Environmental Informatics 3(1), 1–23. doi:10.3808/jei.200400023.

    Google Scholar 

  • Maqsood, I., Li, J. B., & Huang, G. H. (2003). Inexact multiphase modeling system for the management of uncertainty in subsurface contamination. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 7(2), 86–94. doi:10.1061/(ASCE)1090-025X(2003)7:2(86).

    Article  CAS  Google Scholar 

  • Mylopoulos, Y. A., Theodosiou, N., & Mylopoulos, N. A. (1999). A stochastic optimization approach in the design of an aquifer remediation under hydrogeologic uncertainty. Water Resources Management, 13(5), 335–351. doi:10.1023/A:1008182906373.

    Article  Google Scholar 

  • Qin, X. S., Huang, G. H., Huang, Y. F., Zeng, G. M., & Chakma, A. (2006). NRSRM: A decision support system and visualization software for the management of petroleum-contaminated sites. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 28(1–3), 199–220. doi:10.1080/009083190889951.

  • Qin, X. S., Huang, G. H., & Chakma, A. (2007a). A stepwise-inference-based optimization system for supporting remediation of petroleum-contaminated sites. Water, Air, and Soil Pollution, 185(1–4), 349–368. doi:10.1007/s11270-007-9458-1.

    Article  CAS  Google Scholar 

  • Qin, X. S., Huang, G. H., Chakma, A., Chen, B., & Zeng, G. M. (2007b). Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites. Science of The Total Environment, 381(1–3), 17–37. doi:10.1016/j.scitotenv.2007.04.011.

  • Qin, X. S., Huang, G. H., & Chakma, A. (2008a). Modeling groundwater contamination under uncertainty: A factorial-design-based stochastic approach. Journal of Environmental Informatics 11(1), 11–20. doi:10.3808/jei.200800106.

    Google Scholar 

  • Qin, X. S., Huang, G. H., & Chakma, A. (2008b). Optimization of dual-phase vacuum extraction to remove nonaqueous phase liquids in subsurface. Water Resources Research, 44, W04422. doi:10.1029/2006WR005496.

  • Seuntjens, P. (2002). Field-scale cadmium transport in a heterogeneous layered soil. Water, Air, and Soil Pollution, 140(1–4), 401–423. doi:10.1023/A:1020147610743.

    Article  CAS  Google Scholar 

  • Smets, P., & Kennes, R. (1994). The transferable belief model. Artificial Intelligence, 66, 191–234. doi:10.1016/0004-3702(94)90026-4.

    Article  Google Scholar 

  • Yin, Y. Y., Huang, G. H., Hipel, K.W. (1999). Fuzzy relation analysis for multicriteria water resources management. Journal of Water Resources Planning and Management, 125(1), 41–47. doi:10.1061/(ASCE)0733-9496(1999)125:1(41).

    Google Scholar 

  • Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning. Information Sciences, 8, 199–249. doi:10.1016/0020-0255(75)90036-5.

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the Major State Basic Research Development Program of MOST (2005CB724200 and 2006CB403307) and the Natural Science and Engineering Research Council of Canada. The authors deeply appreciate the editors and the anonymous reviewers for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, X.S., Huang, G.H. Characterizing Uncertainties Associated with Contaminant Transport Modeling through a Coupled Fuzzy-Stochastic Approach. Water Air Soil Pollut 197, 331–348 (2009). https://doi.org/10.1007/s11270-008-9815-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9815-8

Keywords

Navigation