Skip to main content
Log in

Effects of Silver on the Photocatalytic Degradation of Gaseous Isopropanol

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The decomposition of gaseous isopropanol (IPA) by UV/TiO2 process in an annular photoreactor was studied under various conditions such as UV light intensity and inlet IPA concentrations. In order to impede the rapid electron/hole recombination during photoreaction, the Ag deposited on TiO2 photocatalysts were prepared by a photodeposition process. This study was aimed at applying the photocatalytic oxidation using the Ag/TiO2 and pure TiO2 catalysts to remove gaseous IPA. The PL analyses indicated that the silver on the surface of TiO2 could inhibit the electron/holes recombination. For experiments conducted with gaseous IPA under UV light irradiation, the photocatalytic activity of Ag deposited TiO2 surface was significantly superior to that of TiO2 only ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Chin, P., Yang, L. P., & Ollis, D. F. (2006). Formaldehyde removal from air via a rotating adsorbent combined with a photocatalyst reactor: Kinetic modeling. Journal of Catalysis, 237, 29–37. doi:10.1016/j.jcat.2005.10.013.

    Article  CAS  Google Scholar 

  • Coleman, H. M., Chiang, K., & Amal, R. (2005). Bactericidal effects of titanium dioxide-based photocatalysts. Chemical Engineering Journal, 113, 67–72.

    Google Scholar 

  • Diebold, U. (2003). The surface science of titanium dioxide. Surface Science Reports, 48, 53–229. doi:10.1016/S0167–5729(02)00100-0.

    Article  CAS  Google Scholar 

  • Doucet, N., Bocquillon, F., Zahraa, O., & Bouchy, M. (2006). Kinetics of photocatalytic VOCs abatement in a standardized reactor. Chemosphere, 65, 1188–1196. doi:10.1016/j.chemosphere.2006.03.061.

    Article  CAS  Google Scholar 

  • Einaga, H., Ibusuki, T., & Futamura, S. (2004). Improvement of Catalyst Durability by Deposition of Rh on TiO2 in Photooxidation of Aromatic Compounds. Environmental Science & Technology, 38, 285–289. doi:10.1021/es034336v.

    Article  CAS  Google Scholar 

  • Jing, L. Q., Qu, Y. C., Wang, B. Q., Li, S. D., Jiang, B. J., Yang, L. B., et al. (2006). Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Solar Energy Materials and Solar Cells, 90, 1773–1787. doi:10.1016/j.solmat.2005.11.007.

    Article  CAS  Google Scholar 

  • Kato, S., Hirano, Y., Iwata, M., Sano, T., Takeuchi, K., & Matsuzawa, S. (2005). Photocatalytic degradation of gaseous sulfur compounds by silver-deposited titanium dioxide. Applied Catalysis. B, Environmental, 57, 109–115.

    Article  CAS  Google Scholar 

  • Ku, Y., Ma, C. M., & Shen, Y. S. (2001). Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile. Applied Catalysis. B, Environmental, 34, 181–190.

    Article  CAS  Google Scholar 

  • Li, F. B., & Li, X. Z. (2002). The Enhancement of Photodegradation Efficiency using Pt-TiO2 Catalyst. Chemosphere, 48, 1103–1111. doi:10.1016/S0045-6535(02)00201-1.

    Article  CAS  Google Scholar 

  • Liu, S. X., Qu, Z. P., Han, X. W., & Suna, C. L. (2004). A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catalysis Today, 95, 877–884. doi:10.1016/j.cattod.2004.06.097.

    Article  Google Scholar 

  • Mohseni, M., & David, A. (2003). Gas phase vinyl chloride (VC) oxidation using TiO2-based photocatalysis. Applied Catalysis. B, Environmental, 46, 219–228.

    Article  CAS  Google Scholar 

  • Obee, T. N. (1996). Photooxidation of sub-parts-per-million toluene and formaldehyde levels on titania using a glass-plate reactor. Environmental Science & Technology, 30, 3578–3584. doi:10.1021/es9602713.

    Article  CAS  Google Scholar 

  • Qi, X. H., Wang, Z. H., Zhuang, Y. Y., Yu, Y., & Li, J. L. (2005). Study on the photocatalysis performance and degradation kinetics of X-3B over modified titanium dioxide. Journal of Hazardous Materials, 118, 219–225. doi:10.1016/j.jhazmat.2004.11.007.

    Article  CAS  Google Scholar 

  • Rengaraj, S., & Li, X. Z. (2006). Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension. Journal of Molecular Catalysis A Chemical, 243, 60–67. doi:10.1016/j.molcata.2005.08.010.

    Article  CAS  Google Scholar 

  • Sakthivel, S., Shankar, M. V., Palanichamy, M., Arabindoo, B., Bahnemann, D. W., & Murugesan, V. (2004). Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research, 38, 3001–3008. doi:10.1016/j.watres.2004.04.046.

    Article  CAS  Google Scholar 

  • Sano, T., Negishi, N., Takeuchi, K., & Matsuzawa, S. (2004). Degradation of VOCS with PT-TIiO2 photocatalyst and concentrated sunlight. Solar Energy, 77, 543–552. doi:10.1016/j.solener.2004.03.018.

    Article  CAS  Google Scholar 

  • Sreethawong, T., Suzuki, Y., & Yoshikawa, S. (2005). Synthesis, characterization, and photocatalytic activity for hydrogen evolution of nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol–gel process. Journal of Solid State Chemistry, 178, 329–338. doi:10.1016/j.jssc.2004.11.014.

    Article  CAS  Google Scholar 

  • Strini, A., Cassese, S., & Schiavi, L. (2005). Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Applied Catalysis. B, Environmental, 61, 90–97.

    Article  CAS  Google Scholar 

  • Wang, W., Ku, Y., Ma, C. M., & Jeng, F. T. (2005). Modeling of the photocatalytic decomposition of gaseous benzene in a TiO2 coated optical fiber photoreactor. Journal of Applied Electrochemistry, 35, 709–714. doi:10.1007/s10800-005-5166-y.

    Article  CAS  Google Scholar 

  • Warren, B. E. (1990). X-ray diffraction. Dover, New York, p.253.

  • Xu, W., & Raftery, D. (2001). Photocatalytic oxidation of 2-propanol on TiO2 powder and TiO2 monolayer catalysts studied by solid-state NMR. The Journal of Physical Chemistry B, 105, 4343–4349. doi:10.1021/jp004381e.

    Article  CAS  Google Scholar 

  • Zhang, F., Jin, R., Chen, J., Shao, C., Gao, W., Li, L., et al. (2005). High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters. Journal of Catalysis, 232, 424–431. doi:10.1016/j.jcat.2005.04.014.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Grant NSC-93-2211-E011-001 from the National Science Council, Taiwan, Republic of China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Ku.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, CM., Ku, Y., Kuo, YL. et al. Effects of Silver on the Photocatalytic Degradation of Gaseous Isopropanol. Water Air Soil Pollut 197, 313–321 (2009). https://doi.org/10.1007/s11270-008-9813-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9813-x

Keywords