Advertisement

Water, Air, and Soil Pollution

, Volume 197, Issue 1–4, pp 143–148 | Cite as

Influence of Metal Nanoparticles on the Soil Microbial Community and Germination of Lettuce Seeds

  • Vishal ShahEmail author
  • Irina Belozerova
Article

Abstract

Short term influence of silica, palladium, gold and copper nanoparticles on a soil microbial community and the germination of lettuce seeds are investigated in this study at two different concentrations of nanoparticles. Results show a statistically insignificant influence of the nanoparticles in the soil on the number of colony forming units, peak areas of methyl ester of fatty acids in the FAME profile or on the total soil community metabolic fingerprint (P > 0.05). Also, all nanoparticles tested in the study influenced the growth of lettuce seeds as measured through shoot/root ratios of the germinated plant (P < 0.05).

Keywords

Nanoparticles Soil microbial community Ecotoxicity 

Notes

Acknowledgement

The work was funded by National Science Foundation (Grant CBET-0714685). We gratefully thank Dr. Fred Rispoli, Dowling College for his help in statistical analysis.

References

  1. Bringmark, L., Bringmark, E., & Samuelsson, B. (1998). Effects on mor layer respiration by small experimental additions of mercury and lead. Science of the Total Environment, 213, 115–119.CrossRefGoogle Scholar
  2. Buffle, J. (2006). The key role of environmental colloids/nanoparticles for sustainability of life. Environment & Chemistry, 3, 155–158.CrossRefGoogle Scholar
  3. Kirk, J. K., Beaudette, L. A., Hart, M., Moutoglis, P., Klironomos, J. N., Lee, H., & Revors, J. T. (2004). Methods of studying soil microbial diversity. Journal of Microbiological Methods, 58, 169–188.CrossRefGoogle Scholar
  4. Lazzaro, A., Schulin, R., Widmer, F., & Frey, B. (2006). Changes in lead availability affect bacterial community structure but not basal respiration in a microcosm study with forest soil. Science of the Total Environment, 371, 110–124.CrossRefGoogle Scholar
  5. Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution, 150, 243–250. doi: 10.1016/j.envpol.2007.01.016.CrossRefGoogle Scholar
  6. Lovern, S. B., & Klaper, R. (2006). Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environmental Toxicology and Chemistry, 25, 1132–1137.CrossRefGoogle Scholar
  7. Lu, C. M., Zhang, C. Y., Wen, J. Q., Wu, G. R., & Tao, M. X. (2002). Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21, 168–172.Google Scholar
  8. Mazumder, A., McQueen, D. J., Taylor, W. D., & Lean, D. R. S. (1990a). Pelagic food web interactions and hypolimnetic oxygen depletion: Results from experimental enclosures and lakes. Aquatic Sciences, 52, 143–155.CrossRefGoogle Scholar
  9. Mazumder, A., McQueen, D. J., Taylor, W. D., Lean, D. R. S., & Dickman, M. D. (1990b). Micro-and mesozooplankton grazing on natural pico- and nanoplankton in contrasting plankton communities produced by planktivore manipulation and fertilization. Archiv fur Hydrobiologie, 118, 257–282.Google Scholar
  10. Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150, 5–22.CrossRefGoogle Scholar
  11. Nyberg, L., Turco, R. F., & Nies, L. (2008). Assessing the impact of nanomaterials on anaerobic microbial communities. Environmental Science & Technology, 42, 1938–1943.CrossRefGoogle Scholar
  12. Saliba, A. M., Nishi, R., Raymond, B., Marques, E. A., Lopes, U. G., Touqui, L., & Plotkowski, M-C. (2006). Implications of oxidative stress in the cytotoxicity of Pseudomonas aeruginosa ExoU. Microbes and Infection, 2, 450–459.CrossRefGoogle Scholar
  13. Sasser, M. (1990). Bacterial Identification by gas chromatographic analysis of fatty acid methyl esters(GC-FAME). Tech note # 101. Internal MIDI document. revised 2006.Google Scholar
  14. Soni, I., & Bondi, S. B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E.coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275, 1770–1782.Google Scholar
  15. Tong, Z., Bischoff, M., Nies, L., Applegate, B., & Turco, R. (2007). Impact of fullerene (C60) on a soil microbial community. Environmental Science & Technology, 51, 2985–2991.CrossRefGoogle Scholar
  16. United States Environmental Protection Agency (2007). Nanotechnology White Paper. Document Number EPA 100/B-07/001 1 February 2007. www.epa.gov/osa.
  17. Vanni, M. J., Layne, C. D., & Arnott, S. E. (1997). “Top-down” trophic interactions in lakes: effects of fish on nutrient dynamics. Ecology, 78, 1–20.Google Scholar
  18. Yang, L., & Watts, D. J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicology Letters, 58, 122–132.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of BiologyDowling CollegeOakdaleUSA

Personalised recommendations