Skip to main content
Log in

Influence of Metal Nanoparticles on the Soil Microbial Community and Germination of Lettuce Seeds

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Short term influence of silica, palladium, gold and copper nanoparticles on a soil microbial community and the germination of lettuce seeds are investigated in this study at two different concentrations of nanoparticles. Results show a statistically insignificant influence of the nanoparticles in the soil on the number of colony forming units, peak areas of methyl ester of fatty acids in the FAME profile or on the total soil community metabolic fingerprint (P > 0.05). Also, all nanoparticles tested in the study influenced the growth of lettuce seeds as measured through shoot/root ratios of the germinated plant (P < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Bringmark, L., Bringmark, E., & Samuelsson, B. (1998). Effects on mor layer respiration by small experimental additions of mercury and lead. Science of the Total Environment, 213, 115–119.

    Article  CAS  Google Scholar 

  • Buffle, J. (2006). The key role of environmental colloids/nanoparticles for sustainability of life. Environment & Chemistry, 3, 155–158.

    Article  CAS  Google Scholar 

  • Kirk, J. K., Beaudette, L. A., Hart, M., Moutoglis, P., Klironomos, J. N., Lee, H., & Revors, J. T. (2004). Methods of studying soil microbial diversity. Journal of Microbiological Methods, 58, 169–188.

    Article  CAS  Google Scholar 

  • Lazzaro, A., Schulin, R., Widmer, F., & Frey, B. (2006). Changes in lead availability affect bacterial community structure but not basal respiration in a microcosm study with forest soil. Science of the Total Environment, 371, 110–124.

    Article  CAS  Google Scholar 

  • Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution, 150, 243–250. doi:10.1016/j.envpol.2007.01.016.

    Article  CAS  Google Scholar 

  • Lovern, S. B., & Klaper, R. (2006). Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environmental Toxicology and Chemistry, 25, 1132–1137.

    Article  CAS  Google Scholar 

  • Lu, C. M., Zhang, C. Y., Wen, J. Q., Wu, G. R., & Tao, M. X. (2002). Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21, 168–172.

    CAS  Google Scholar 

  • Mazumder, A., McQueen, D. J., Taylor, W. D., & Lean, D. R. S. (1990a). Pelagic food web interactions and hypolimnetic oxygen depletion: Results from experimental enclosures and lakes. Aquatic Sciences, 52, 143–155.

    Article  Google Scholar 

  • Mazumder, A., McQueen, D. J., Taylor, W. D., Lean, D. R. S., & Dickman, M. D. (1990b). Micro-and mesozooplankton grazing on natural pico- and nanoplankton in contrasting plankton communities produced by planktivore manipulation and fertilization. Archiv fur Hydrobiologie, 118, 257–282.

    Google Scholar 

  • Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150, 5–22.

    Article  CAS  Google Scholar 

  • Nyberg, L., Turco, R. F., & Nies, L. (2008). Assessing the impact of nanomaterials on anaerobic microbial communities. Environmental Science & Technology, 42, 1938–1943.

    Article  CAS  Google Scholar 

  • Saliba, A. M., Nishi, R., Raymond, B., Marques, E. A., Lopes, U. G., Touqui, L., & Plotkowski, M-C. (2006). Implications of oxidative stress in the cytotoxicity of Pseudomonas aeruginosa ExoU. Microbes and Infection, 2, 450–459.

    Article  Google Scholar 

  • Sasser, M. (1990). Bacterial Identification by gas chromatographic analysis of fatty acid methyl esters(GC-FAME). Tech note # 101. Internal MIDI document. revised 2006.

  • Soni, I., & Bondi, S. B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E.coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275, 1770–1782.

    Google Scholar 

  • Tong, Z., Bischoff, M., Nies, L., Applegate, B., & Turco, R. (2007). Impact of fullerene (C60) on a soil microbial community. Environmental Science & Technology, 51, 2985–2991.

    Article  Google Scholar 

  • United States Environmental Protection Agency (2007). Nanotechnology White Paper. Document Number EPA 100/B-07/001 1 February 2007. www.epa.gov/osa.

  • Vanni, M. J., Layne, C. D., & Arnott, S. E. (1997). “Top-down” trophic interactions in lakes: effects of fish on nutrient dynamics. Ecology, 78, 1–20.

    Google Scholar 

  • Yang, L., & Watts, D. J. (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicology Letters, 58, 122–132.

    Article  Google Scholar 

Download references

Acknowledgement

The work was funded by National Science Foundation (Grant CBET-0714685). We gratefully thank Dr. Fred Rispoli, Dowling College for his help in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, V., Belozerova, I. Influence of Metal Nanoparticles on the Soil Microbial Community and Germination of Lettuce Seeds. Water Air Soil Pollut 197, 143–148 (2009). https://doi.org/10.1007/s11270-008-9797-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9797-6

Keywords

Navigation