Skip to main content
Log in

Reduction of Hexavalent Chromium in Soil and Ground Water Using Zero-Valent Iron Under Batch and Semi-Batch Conditions

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Chemical remediation of soil and groundwater containing hexavalent chromium (Cr(VI)) was carried out under batch and semi-batch conditions using different iron species: (Fe(II) (sulphate solution); Fe0 G (granulated elemental iron); ZVIne (non-stabilized zerovalent iron) and ZVIcol (colloidal zerovalent iron). ZVIcol was synthesized using different experimental conditions with carboxymethyl cellulose (CMC) and ultra-sound. Chemical analysis revealed that the contaminated soil (frank clay sandy texture) presented an average Cr(VI) concentration of 456 ± 35 mg kg−1. Remediation studies carried out under batch conditions indicated that 1.00 g of ZVIcol leads to a chemical reduction of ∼280 mg of Cr(VI). Considering the fractions of Cr(VI) present in soil (labile, exchangeable and insoluble), it was noted that after treatment with ZVIcol (semi-batch conditions and pH 5) only 2.5% of these species were not reduced. A comparative study using iron species was carried out in order to evaluate the reduction potentialities exhibited by ZVIcol. Results obtained under batch and semi-batch conditions indicate that application of ZVIcol for the “in situ” remediation of soil and groundwater containing Cr(VI) constitutes a promising technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Calder, L. M. (1988). Chromium contamination of groundwater. In J. O. Niagru, & E. Nieboer (Eds.), Chromium in the natural and human environments (pp. 215–229). New York: Wiley & Sons.

    Google Scholar 

  • Cao, J., & Zhang, W. X. (2006). Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. Journal of Hazardous Materials B, 132(2–3), 213–219. doi:10.1016/j.jhazmat.2005.09.008.

    Article  CAS  Google Scholar 

  • Domenico, P. A., & Schwartz, F. W. (1979). Physical and chemical hydrogeology (2nd ed.). New York: Wiley & Sons.

    Google Scholar 

  • EPA (2000). In situ treatment of soil and groundwater contaminated with Chromium, Office of Research and Development, EPA/625/R-00/005, US, Environmental Protect Agency, Washington, D.C.

  • Franco, D. V., Da Silva, L. M., & Jardim, W. F. (2008). Evaluation of reducing agents for the remediation of soil containing hexavalent chromium. Environmental Science & Technology, submitted.

  • He, F., & Zhao, D. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science & Technology, 39(9), 3314–3320. doi:10.1021/es048743y.

    Article  CAS  Google Scholar 

  • He, F., Zhao, D., Liu, J., & Roberts, C. B. (2007). Stabilization of Fe–Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemistry Research, 46(1), 29–34. doi:10.1021/ie0610896.

    Article  CAS  Google Scholar 

  • James, B. R., Petura, J. C., Vitale, R. J., & Mussoline, G. R. (1995). Hexavalent chromium extraction from soils: a comparison of five methods. Environmental Science & Technology, 29(9), 2377–2381. doi:10.1021/es00009a033.

    Article  CAS  Google Scholar 

  • Kataby, G., Cojocaru, M., Prozorov, R., & Gedanken, A. (1999). Coating carboxylic acids on amorphous iron nanoparticles. Langmuir, 15(5), 1703–1708. doi:10.1021/la981001w.

    Article  CAS  Google Scholar 

  • Kataby, G., Prozorov, T., Koltypin, Y., Cohen, H., Sukenik, C., Ulman, A., et al. (1997). Self-assembled monolayer coating and amorphous iron and iron oxide nanoparticles: thermal stability and chemical reactivity studies. Langmuir, 13(23), 6151–6158. doi:10.1021/la960929q.

    Article  CAS  Google Scholar 

  • Kim, D. K., Mikhaylova, M., Zhang, Y., & Muhammed, M. (2003). Protective coating of superamagnetic iron oxide nanoparticles. Chemistry of Materials, 15(8), 1617–1627. doi:10.1021/cm021349j.

    Article  CAS  Google Scholar 

  • Kimbrough, D. E., Cohen, Y., Winer, A. M., Creelman, L., & Mabuni, C. (1999). A critical assessment of chromium in the environment. Critical Reviews in Environmental Science and Technology, 29(1), 1–46. doi:10.1080/10643389991259164.

    Article  CAS  Google Scholar 

  • Magdassi, S., Bassa, A., Vinetsky, Y., & Kamyshny, A. (2003). Silver nanoparticles as pigments for water-based ink-jet inks. Chemistry of Materials, 15(11), 2208–2217. doi:10.1021/cm021804b.

    Article  CAS  Google Scholar 

  • Suslick, K. S., Fang, M., & Hycon, T. (1996). Sonochemical synthesis of iron colloids. Journal of the American Chemical Society, 118(47), 11960–11961. doi:10.1021/ja961807n.

    Article  CAS  Google Scholar 

  • Palmer, C. D., & Wittbrodt, P. R. (1991). Processes affecting the remediation of chromium-contaminated sites. Environmental Health and Perspectives, 92, 25–40.

    Article  CAS  Google Scholar 

  • Ponder, S. M., Darab, J. G., & Mallouk, T. E. (2000). Remediation of Cr(VI) e Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 34(12), 2564–2569. doi:10.1021/es9911420.

    Article  CAS  Google Scholar 

  • Schrick, B., Hydutsky, B. W., Blough, J. L., & Mallouk, T. E. (2004). Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 16(11), 2187–2193. doi:10.1021/cm0218108.

    Article  CAS  Google Scholar 

  • Seaman, J. C., Bertsch, P. M., & Schwallie, L. (1999). In situ Cr(VI) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe(II) solutions. Environmental Science & Technology, 33(6), 938–944. doi:10.1021/es980546+.

    Article  CAS  Google Scholar 

  • Si, S., Kotal, A., Mandal, T., Giri, S., Nakamura, H., & Kohara, T. (2004). Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chemistry of Materials, 16(18), 3489–3496. doi:10.1021/cm049205n.

    Article  CAS  Google Scholar 

  • Su, C., & Ludwig, R. D. (2005). Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite. Environmental Science & Technology, 39(16), 6208–6216. doi:10.1021/es050185f.

    Article  CAS  Google Scholar 

  • Sun, S., & Zeng, H. (2002). Size-controlled synthesis of magnetic nanoparticles. Journal of the American Chemical Society, 124(28), 8204–8205. doi:10.1021/ja026501x.

    Article  CAS  Google Scholar 

  • Tokunaga, T. K., Wan, J., Firestone, M. K., Hazen, T. C., Schwartz, E., Sutton, S. R., et al. (2001). Chromium diffusion and reduction in soil aggregates. Environmental Science & Technology, 35(15), 3196–3174. doi:10.1021/es010523m.

    Article  Google Scholar 

  • Xu, Y., & Zhao, D. (2007). Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Research, 41(10), 2101–2108. doi:10.1016/j.watres.2007.02.037.

    Article  CAS  Google Scholar 

  • Zhang, W. X., Wang, C. B., & Lien, H. L. (1998). Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 40(4), 387–395. doi:10.1016/S0920-5861(98)00067-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Scientific Council for Research and Development (CNPq—Brazil) and Dr. Carol Collins for her technical assistance with the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Débora V. Franco.

Glossary

MCV

Maximum concentration value for Cr(VI)

SGW

Synthetic groundwater

ZVIne

Non-stabilized zerovalent iron

ZVIcol

Colloidal zerovalent iron stabilized using CMC

Fe0 G

Granulated zerovalent iron

Fe(II)

Ferrous sulfate solution

CMC

Carboxymethyl cellulose

PV

Pore volume (−)

G

Volumetric flow rate (ml min−1)

ν

Linear velocity of the fluid (cm h−1)

k VD

Volumetric mass dispersion coefficient (h−1)

k obs

Pseudo-first order kinetic rate constant for the redox reaction (h−1)

k obs*

Overall pseudo-first order kinetic rate constant for the redox reaction (h−1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franco, D.V., Da Silva, L.M. & Jardim, W.F. Reduction of Hexavalent Chromium in Soil and Ground Water Using Zero-Valent Iron Under Batch and Semi-Batch Conditions. Water Air Soil Pollut 197, 49–60 (2009). https://doi.org/10.1007/s11270-008-9790-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9790-0

Keywords

Navigation