Skip to main content
Log in

Metal Tolerance, Accumulation and Translocation in Poplar and Willow Clones Treated with Cadmium in Hydroponics

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

To evaluate the phytoremediation capability of some poplar and willow clones a hydroponic screening for cadmium tolerance, accumulation and translocation was performed. Rooted cuttings were exposed for 3 weeks to 50 μM cadmium sulphate in a growth chamber and morpho-physiological parameters and cadmium content distribution in various parts of the plant were evaluated. Total leaf area and root characteristics in clones and species were affected by cadmium treatment in different ways. Poplar clones showed a remarkable variability whereas willow clones were observed to be more homogeneous in cadmium accumulation and distribution. This behaviour was further confirmed by the calculation of the bio-concentration factor (BCF) and the translocation factor (Tf). Mean values of all the clones of the two Salicaceae species showed that willows had a far greater ability to tolerate cadmium than poplars, as indicated by the tolerance index (Ti), calculated on the dry weight of roots and shoots of plants. As far as the mean values of Tf was concerned, the capacity of willows to translocate was double that of poplars. On the contrary, the mean values of total BCF in poplar clones was far higher with respect to those in willows. The implications of these results in the selection of Salicaceae clones for phytoremediation purposes were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ait Ali, N., Pilar Bernal, M., & Ater, M. (2004). Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of cadmium, copper and zinc. Aquatic Botany, 80, 163–176. doi:10.1016/j.aquabot.2004.08.008.

    Article  CAS  Google Scholar 

  • Arnon, D. I., & Hoagland, D. R. (1940). Crop production in artificial culture solutions and in soils with special reference to factors influencing yields and absorption of inorganic nutrient. Soil Science, 50, 463–483.

    CAS  Google Scholar 

  • Becerril, J. M., Munoz-Rueda, A., Aparicio-Tejo, P., & Gonzales-Murua, C. (1988). The effects of cadmium and lead on photosynthetic electron transport in clover and lucerne. Plant Physiology and Biochemistry, 26, 357–363.

    CAS  Google Scholar 

  • Ceulemans, R., Scarascia-Mugnozza, G., Wiard, B. M., Braatne, J. H., Hinckley, T. M., Stettler, R. F., et al. (1992). Production physiology and morphology of Populus species and their hybrids grown under short rotation. I. Clonal comparisons of 4-year growth and phenology. Canadian Journal of Forest Research, 22, 1937–1948.

    Article  Google Scholar 

  • Cunningham, S. D., & Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110, 715–719.

    CAS  Google Scholar 

  • Deng, H., Ye, Z. H., & Wong, M. H. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 132, 29–40. doi:10.1016/j.envpol.2004.03.030.

    Article  CAS  Google Scholar 

  • Dickinson, N. M., & Pulford, I. D. (2005). Cadmium phytoextraction using short-rotation coppice Salix: The evidence trail. Environment International, 31, 609–613. doi:10.1016/j.envint.2004.10.013.

    Article  CAS  Google Scholar 

  • Dos Santos Utmazian, M. N., Wieshammer, G., Vega, R., & Wenzel, W. W. (2007). Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environmental Pollution, 148, 155–165. doi:10.1016/j.envpol.2006.10.045.

    Article  CAS  Google Scholar 

  • Fischerová, Z., Tlustos, P., Szakova, J., & Sichorova, K. (2006). A comparison of phytoremediation capability of selected plant species for given trace elements. Environmental Pollution, 144, 93–100. doi:10.1016/j.envpol.2006.01.005.

    Article  CAS  Google Scholar 

  • Greger, M., & Landberg, T. (1999). Use of willow in phytoextraction. International Journal of Phytoremediation, 1, 115–123. doi:10.1080/15226519908500010.

    Article  CAS  Google Scholar 

  • Keltjens, W. G., & van Beusichem, M. L. (1998). Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): Combined effects of copper and cadmium. Plant and Soil, 203, 119–126. doi:10.1023/A:1004373700581.

    Article  CAS  Google Scholar 

  • Kramer, U., Cotter-Howells, J. D., Charnock, J. M., Baker, A. J. M., & Smith, J. A. C. (1996). Free histidine as a metal chelator in plants that accumulate nickel. Nature, 379, 635–638. doi:10.1038/379635a0.

    Article  CAS  Google Scholar 

  • Kumar, P. B. A. N., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: The use of plants to remove heavy metals from soils. Environmental Science & Technology, 29, 1232–1238. doi:10.1021/es00005a014.

    Article  CAS  Google Scholar 

  • Kuzovkina, Y. A., Knee, M., & Quigley, M. F. (2004). Cadmium and copper uptake and translocation in five willow (Salix L.) species. International Journal of Phytoremediation, 6, 269–287. doi:10.1080/16226510490496726.

    Article  CAS  Google Scholar 

  • Kuzovkina, Y. A., & Quigley, M. F. (2005). Willows beyond wetlands: Uses of Salix L. species for environmental projects. Water, Air, and Soil Pollution, 162, 183–204. doi:10.1007/s11270-005-6272-5.

    Article  CAS  Google Scholar 

  • Landberg, T., & Greger, M. (1996). Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Applied Geochemistry, 11, 175–180. doi:10.1016/0883-2927(95)00082-8.

    Article  CAS  Google Scholar 

  • Laureysens, I., Blust, R., De Temmerman, L., Lemmens, C., & Ceulemans, R. (2004a). Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environmental Pollution, 131, 485–494. doi:10.1016/j.envpol.2004.02.009.

    Article  CAS  Google Scholar 

  • Laureysens, I., Bogaert, J., Blust, R., & Ceulemans, R. (2004b). Biomass production of 17 poplar clones in a short-rotation coppice culture on a waste disposal site and its relation to soil characteristics. Forest Ecology and Management, 187, 295–309. doi:10.1016/j.foreco.2003.07.005.

    Article  Google Scholar 

  • Lunáčková, L., Masarovičová, E., Králová, K., & Streško, V. (2003a). Response of fast growing woody plants from family Salicaceae to cadmium treatment. Bulletin of Environmental Contamination and Toxicology, 70, 576–585. doi:10.1007/s00128-003-0024-2.

    Article  CAS  Google Scholar 

  • Lunáčková, L., Šottníková, A., Masarovičová, E., Lux, A., & Streško, V. (2003b). Comparison of cadmium effect on willow and poplar in response to different cultivation conditions. Biologia Plantarum, 47, 403–411. doi:10.1023/B:BIOP.0000023884.54709.09.

    Article  Google Scholar 

  • Lux, A., Šottníková, A., Opatrná, J., & Greger, M. (2004). Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiologia Plantarum, 120, 537–545. doi:10.1111/j.0031-9317.2004.0275.x.

    Article  CAS  Google Scholar 

  • Marchiol, L., Sacco, P., Assolati, S., & Zerbi, G. (2004). Reclamation of polluted soil: Phytoremediation potential of crop-related Brassica species. Water, Air, and Soil Pollution, 158, 345–356. doi:10.1023/B:WATE.0000044862.51031.fb.

    Article  CAS  Google Scholar 

  • Mattina, M. J. I., Lannucci-Berger, W., Musante, C., & White, J. C. (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution, 124, 375–378. doi:10.1016/S0269-7491(03)00060-5.

    Article  CAS  Google Scholar 

  • Mills, T. M., Robinson, B. H., Green, S., Clothier, B., Fung, L. E., & Hurst, S. (2000). Difference in Cd uptake and distribution within poplar and willow species. In Proceedings of the 42nd Annual Conference and Expo of the New Zealand Water and Waste Association, Rotorua, New Zealand.

  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: Hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184, 105–126. doi:10.1007/s11270-007-9401-5.

    Article  CAS  Google Scholar 

  • Perttu, K. L. (1999). Environmental and hygienic aspects of willow coppice in Sweden. Biomass and Bioenergy, 16, 291–297. doi:10.1016/S0961-9534(98)00012-9.

    Article  Google Scholar 

  • Pietrini, F., Iannelli, M. A., Montanari, R., Bianconi, D., & Massacci, A. (2005). Cadmium interaction with thiols and photosynthesis in higher plants. In A. Hemantaranjan (Ed.), Advances in plant physiology (pp. 313–326). Jodhpur, India: Scientific Publishers.

    Google Scholar 

  • Pietrini, F., Iannelli, M. A., Pasqualini, S., & Massacci, A. (2003). Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex strudel. Plant Physiology, 133, 829–837. doi:10.1104/pp.103.026518.

    Article  CAS  Google Scholar 

  • Pilipović, A., Nikolić, N., Orlović, S., Petrović, N., & Krstić, B. (2005). Cadmium phytoextraction potential of poplar clones (Populus spp.). Zeitschrift für Naturforschung, 60c, 247–251.

    Google Scholar 

  • Pulford, I. D., Riddell-Black, D., & Stewart, C. (2002). Heavy metal uptake by willow clones from sewage sludge-treated soil: The potential for phytoremediation. International Journal of Phytoremediation, 4, 59–72. doi:10.1080/15226510208500073.

    Article  CAS  Google Scholar 

  • Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees – A review. Environment International, 29, 529–540. doi:10.1016/S0160-4120(02)00152-6.

    Article  CAS  Google Scholar 

  • Punshon, T., & Dickinson, N. M. (1999). Heavy metal resistance and accumulation characteristics in willows. International Journal of Phytoremediation, 1, 361–385. doi:10.1080/15226519908500025.

    Article  CAS  Google Scholar 

  • Raskin, I., Smith, R. D., & Salt, D. E. (1997). Phytoremediation of metals: Using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 2, 221–226. doi:10.1016/S0958-1669(97)80106-1.

    Article  Google Scholar 

  • Rauser, W. E. (1999). Structure and function of metal chelators produced by plants – The case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochemistry and Biophysics, 31, 19–48. doi:10.1007/BF02738153.

    Article  CAS  Google Scholar 

  • Rauser, W. E., & Muwly, P. (1995). Retention of cadmium in roots of maize seedlings. Role of complexation by phytochelatins and related thiol peptides. Plant Physiology, 109, 195–202. doi:10.1104/pp.109.1.195.

    Article  CAS  Google Scholar 

  • Riddell-Black, D. (1994). Heavy metal uptake by fast growing willow species. In P. Aronsson, & K. Perttu (Eds.), Willow vegetation filters for municipal wastewaters and sludges. A biological purification system (pp. 145–151). Uppsala, Sweden: Department of Ecology and Environmental Research, Section of Short Rotation Forestry.

    Google Scholar 

  • Robinson, B. H., Mills, T. M., Green, S., Chancerel, B., Clothier, B., Fung, L. E., et al. (2005). Trace element accumulation by poplars and willows used for stock fodder. New Zeland Journal of Agriculture Research, 48, 489–497.

    Google Scholar 

  • Robinson, B. H., Mills, T. M., Petit, D., Fung, L. E., Green, S., & Clothier, B. (2000). Natural and induced cadmium-accumulation in poplar and willow: Implications for phytoremediation. Plant and Soil, 227, 301–306. doi:10.1023/A:1026515007319.

    Article  CAS  Google Scholar 

  • Rockwood, D. L., Naidu, C. V., Carter, D. R., Rahmani, M., Spriggs, T. A., Lin, C., et al. (2004). Short-rotation woody crops and phytoremediation: Opportunities for agroforestry? Agroforestry Systems, 61, 51–63. doi:10.1023/B:AGFO.0000028989.72186.e6.

    Article  Google Scholar 

  • Rosselli, W., Keller, C., & Boschi, K. (2003). Phytoextraction capacity of trees growing on a metal contaminated soil. Plant and Soil, 256, 265–272. doi:10.1023/A:1026100707797.

    Article  CAS  Google Scholar 

  • Sanità di Toppi, L., & Gabbrielli, R. (1999). Responses to cadmium in higher plants. Environmental and Experimental Botany, 41, 105–130. doi:10.1016/S0098-8472(98)00058-6.

    Article  Google Scholar 

  • Scarascia-Mugnozza, G., Ceulemans, R., Heilman, P. E., Isebrands, J. G., Stettler, R. F., & Hinckley, T. M. (1997). Production physiology and morphology of Populus species and their hybrids grown under short rotation. II. Biomass components and harvest index of hybrid and parental species clones. Canadian Journal of Forest Research, 27, 285–294.

    Google Scholar 

  • Šottníková, A., Lunáčková, L., Masarovičová, E., Lux, A., & Streško, V. (2003). Changes in the rooting and growth of willow and poplars induced by cadmium. Biologia Plantarum, 46, 129–131. doi:10.1023/A:1022395118998.

    Article  Google Scholar 

  • Unterbrunner, R., Puschenreiter, M., Sommer, P., Wieshammer, G., Tlustos, P., Zupan, M., et al. (2007). Heavy metal accumulation in tree growing on contaminated sites in Central Europe. Environmental Pollution, 148, 107–114. doi:10.1016/j.envpol.2006.10.035.

    Article  CAS  Google Scholar 

  • Wang, K. S., Huang, L. C., Lee, H. S., Chen, P. Y., & Chang, S. H. (2008). Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: Effects of cadmium speciation. Chemosphere, 72, 666–672. doi:10.1016/j.chemosphere.2008.03.034.

    Article  CAS  Google Scholar 

  • Watson, C., Pulford, I. D., & Riddell-Black, D. (1999). Heavy metal toxicity responses of two willow (Salix) varieties grown hydroponically: Development of a tolerance screening test. Environmental Geochemistry and Health, 21, 359–364. doi:10.1023/A:1006796720300.

    Article  CAS  Google Scholar 

  • Watson, C., Pulford, I. D., & Riddell-Black, D. (2003). Screening of willow species for resistance to heavy metals: Comparison of performance in a hydroponics system and field trials. International Journal of Phytoremediation, 5, 351–365. doi:10.1080/16226510390268748.

    CAS  Google Scholar 

  • Wilkins, D. A. (1978). The measurement of tolerance to edaphic factors by means of root growth. The New Phytologist, 80, 623–633. doi:10.1111/j.1469-8137.1978.tb01595.x.

    Article  CAS  Google Scholar 

  • Zayed, A., Gowthaman, S., & Terry, N. (1998). Phytoaccumulation of trace elements by wetlands plants: I. Duckweed. Journal of Environmental Quality, 27, 715–721.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by MIUR (Ministry for Education, University and Research) under PRIN 2005 project no. 2005-072892. Authors also wish to thank Prof. Paolo Sequi (CRA-RPS) for research collaboration within PRAL research project and Antonio Barchetti (CRA-RPS) for valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Massacci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zacchini, M., Pietrini, F., Scarascia Mugnozza, G. et al. Metal Tolerance, Accumulation and Translocation in Poplar and Willow Clones Treated with Cadmium in Hydroponics. Water Air Soil Pollut 197, 23–34 (2009). https://doi.org/10.1007/s11270-008-9788-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9788-7

Keywords

Navigation