Abstract
In coastal marshy lands, halogen bromide concentration is reported to be generally higher than in the inland soils where, annual halophytic species naturally grow. The effect of bromide on plant responses is relatively less known. The objectives of this study were to assess the effect of sodium bromide (NaBr) on growth, photosynthetic pigments, tissue ions content and changes in enzymes activity in Salicornia brachiata, a salt marsh halophyte. Presence of NaBr in the root medium induced 200 percent increase in fresh mass and 30% increase in dry mass, compared to untreated control. Relative water content also increased significantly with NaBr treatment. Increase in fresh and dry mass was not associated with high photosynthetic efficiency as evidenced by decrease in photosynthetic pigments accumulation. However, inorganic ion analysis revealed that S. brachiata accumulated Na+ as a primary osmotica. The concentration of Na+ in NaBr treated plants was ∼4 fold higher than that measured in untreated controls and this was associated with significant reduction in K+, Ca2+, Mg2+ contents. Bromide content also increased significantly and accounted for 20 to 50 percent of dry weight. In addition, significant differences in the activities of superoxide dismutase (SOD), peroxidase (POX), catalase (CAT) and ATPase were observed in bromide treated plants. For the first time bromide tolerance in coastal halophyte was reported and the results suggest that bromide was not toxic to S. brachiata for growth and metabolism even at 600 mM. concentration and suggest that the species can be used in phytoremediation of bromide contaminated soils.

Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Apostol, K. G., Zwiazek, J. J., & MacKinnon, M. D. (2002). NaCl and Na2SO4 alter responses of jack pine (Pinus banksiana) seedlings to boron. Plant and Soil, 240, 321–329. doi:10.1023/A:1015753128876.
Apse, M. P., Aharon, G. S., Snedden, W. S., & Blumwald, E. (1999). Salt tolerance conferred by over expression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 285, 1256–1258. doi:10.1126/science.285.5431.1256.
Arnon, D. I. (1949). Copper enzymes in isolated chloroplast. Polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1–15.
Ayala, F., & O’Leary, J. W. (1995). Growth and physiology of Salicornia bigelovii Torr. At suboptimal salinity. International Journal of Plant Sciences, 156, 197–205. doi:10.1086/297241.
Ayala, F., O’Leary, J. W., & Schumaker, K. S. (1995). Increased vacuolar and plasma membrane H+-ATPase activities in Salicornia bigelovii Torr. in response to NaCl. Journal of Experimental Botany, 47, 25–32. doi:10.1093/jxb/47.1.25.
Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an essay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287. doi:10.1016/0003-2697(71)90370-8.
Benavides, M. P., Marconi, P. L., Gallego, S. M., Comba, M. E., & Tomaro, M. L. (2000). Relationship between antioxidant defense systems and salt tolerance in Solannum tuberosum. Australian Journal of Plant Physiology, 27, 273–278.
Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. doi:10.1016/0003-2697(76)90527-3.
Cayyuela, E., Esta, M. T., Parra, M., Caro, M., & Bolarin, M. C. (2001). NaCl pre-treatment at the seedling stage enhances fruit yield of tomato irrigated with salt water. Plant and Soil, 230, 231–238. doi:10.1023/A:1010380432447.
Chang, S. C., & Kaufman, P. B. (2000). Effects of staurosporine, okadaic acid and sodium fluoride on protein phosphorylation in gravi-responding oat shoot pulvini. Plant Physiology and Biochemistry, 38, 315–323. doi:10.1016/S0981-9428(00)00745-2.
Cherian, S., & Reddy, M. P. (2000). Salt tolerance in the Halophyte Suaeda nudiflora moq: effect of NaCl on growth, ion accumulation and oxidative enzymes. Indian Journal of Plant Physiology, 5, 32–37.
Cherian, S., & Reddy, M. P. (2003). Evaluation of NaCl tolerance in callus cultures of Suaeda nudiflora moq. Biologia Plantarum, 46, 193–198. doi:10.1023/A:1022838224429.
Cherian, S., Reddy, M. P., & Pandya, J. B. (1999). Studies on salt tolerance in Avicennia marina (forstk vierah): effect of NaCl salinity on growth, ion accumulation and enzyme activity. Indian Journal of Plant Physiology, 4, 266–270.
Dat, J. F., Inzé, D., & Van Breusegem, F. (2001). Catalase-deficient tobacco plants: tools for in planta studies on the role of hydrogen peroxide. Redox Report, 6, 37–42. doi:10.1179/135100001101536012.
Debez, A. K., Hamed, B., Grignon, C., & Abdelly, C. (2004). Salinity effects on germination, growth and seed production of the halophyte Cakile maritime. Plant and Soil, 262, 179–189. doi:10.1023/B:PLSO.0000037034.47247.67.
Elkahoui, S., Hernández, J. A., Abdelly, C., Ghrir, R., & Limam, F. (2005). Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Science, 168, 607–613. doi:10.1016/j.plantsci.2004.09.006.
FAO. (1992). The use of saline waters for crop production. Irrigation and Drainage Papers, 48. Food and Agriculture Organization of the United Nations, Rome, p. 184.
FAO. (1995). Environmental impact assessment of irrigation and drainage projects. Irrigation and Drainage Papers, 53. Food and Agriculture Organization of the United Nations, Rome, p. 75.
Fidalgo, F., Santos, A., Santos, I., & Salema, R. (2004). Effects of long-term salt stress on antioxidant defense systems, leaf water relations and chloroplast ultrastructure of potato plants. The Annals of Applied Biology, 145, 185–192. doi:10.1111/j.1744-7348.2004.tb00374.x.
Flowers, T. J., Troke, P. F., & Yeo, A. R. (1977). The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology, 28, 89–121. doi:10.1146/annurev.pp.28.060177.000513.
Flowers, T. J., Garcia, A., Koyarna, M., & Yeo, A. R. (1997). Breeding for salt tolerance in crop plants - the role of molecular biology. Acta Physiologiae Plantarum, 19, 427–433.
Fornasiero, R. B. (2001). Phytotoxic effects of fluorides. Plant Science, 161, 979–985. doi:10.1016/S0168-9452(01)00499-X.
Fornasiero, R. B. (2003). Fluorides effects on Hypericum perforatum plants: first field observations. Plant Science, 165, 507–513. doi:10.1016/S0168-9452(03)00205-X.
Franklin, J. A., Zwiazek, J. J., Renault, S., & Croser, C. (2002). Growth and elemental composition of jack pine (Pinus banksiana) seedlings treated with sodium chloride and sodium sulfate. Trees (Berlin), 16, 325–330.
Ghosh, P. K., Reddy, M. P., Pandya, J. B., Patolia, J. S., Waghela, S. M., Gandhi, M. R., et al. (2005). Preparation of nutritious salt of plant origin. US patent 6, 929, 809.
Giannopolitis, C. N., & Reis, S. K. (1977). Superoxide dismutase: occurrence in higher plants. Plant Physiology, 59, 309–314.
Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18, 227–255. doi:10.1016/S0735-2689(99)00388-3.
Glenn, E. P., & O’Leary, J. W. (1984). Relationship between salt accumulation and water content of dicotyledonous halophytes. Plant, Cell & Environment, 7, 253–261.
Glenn, E. P., O’Leary, J. W., Waston, M. C., Thompson, T. L., & Kuehl, R. O. (1991). Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science, 251, 1065–1067. doi:10.1126/science.251.4997.1065.
Gómez, J. M., Hernàndez, J. A., Jiménez, A., Del Rio, L. A., & Sevilla, F. (1999). Differential response of antioxidative system of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radical Research, 31, 11–18. doi:10.1080/10715769900301261.
Hernàndez, J. A., Campillo, A., Jiménez, A., Alarcon, J. J., & Sevilla, F. (1999). Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. The New Phytologist, 141, 241–251. doi:10.1046/j.1469-8137.1999.00341.x.
Hernàndez, J. A., Jimenez, A., Mullineaux, P., & Sevilla, F. (2000). Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant, Cell & Environment, 23, 853–862. doi:10.1046/j.1365-3040.2000.00602.x.
Hernàndez, J. A., Olmos, E., Corpas, F. J., Sevilla, F., & Del Rio, L. A. (1995). Salt-induced oxidative stress in chloroplasts of pea plants. Plant Science, 105, 151–167. doi:10.1016/0168-9452(94)04047-8.
Ikan, R. (1969). Natural products. A laboratory guide. New York: Academic.
Janick, J. (1999). The search for new food resources. Plant Biotechnology, 16, 7–32.
Kamaluddin, M., & Zwiazek, J. J. (2003). Fluoride inhibits root water transport and affects leaf expansion and gas exchange in aspen (Populus tremuloides) seedlings. Physiologia Plantarum, 117, 368–375. Medline. doi:10.1034/j.1399-3054.2003.00040.x.
Kar, M., & Mishra, O. (1976). Catalase, peroxidase and polyphenol oxidase activity during rice leaf senescence. Plant Physiology, 57, 315–319.
Kasamo, K. (1979). Characterization of membrane bound Mg2+ activated ATPase isolated from the lower epidermis of tobacco leaves. Plant & Cell Physiology, 201, 281–292.
Kaur, J., & Duffus, C. (1989). The effect of sodium fluoride on cereal seed germination and seedling growth. Plant, Cell & Environment, 12, 155–161. doi:10.1111/j.1365-3040.1989.tb01928.x.
Kennedy, B. F., & de Filippis, L. F. (1999). Physiological and oxidative response to NaCl of the salt tolerant Grevillea licifolia and the salt sensitive Grevillea arenaria. Journal of Plant Physiology, 155, 746–754.
Khan, A. H., Ashraf, M. Y., Naqvi, S. S. M., Khanzada, B., & Ali, M. (1995). Growth, ion and solute contents of sorghum grown under NaCl and Na2So4 salinity stress. Acta Physiologiae Plantarum, 17, 261–268.
Kim, C. K., & Weber, D. J. (1980). Isolation and characterization of adenosine triphosphatase from Salicornia pacifica var. utahensis. Plant & Cell Physiology, 21, 755–763.
Klumpp, A., Domingos, M., & Pignata, M. L. (2000). Air pollution and vegetation damage in South America – state of knowledge and perspectives. In S. B. Agrawal & M. Agrawal (Eds.), Environmental pollution and plant responses (pp. 11–136). New York: CRC.
Lee, D. H., Kim, Y. S., & Lee, C. B. (2001). The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). Journal of Plant Physiology, 158, 737–745. doi:10.1078/0176-1617-00174.
Lüttge, U., & Smith, A. C. (1984). Structural, biophysical, and biochemical aspects of the role of leaves in plant adaptation to salinity and water stress. In R. C. Staples & G. H. Toenniessen (Eds.), Salinity tolerance in plants: Strategies for crop improvement (pp. 125–150). New York: Wiley.
Maggio, A., Reddy, M. P., & Robert, J. J. (2000). Leaf gas exchange and solute accumulation in the halophyte Salvadora persica grown at moderate salinity. Environmental and Experimental Botany, 44, 31–38. doi:10.1016/S0098-8472(00)00051-4.
Marcar, N. E., & Termaat, A. (1990). Effects of root-zone solutes on Eucalyptus camaldulensis and Eucalyptus bicostata seedlings: responses to Na+, Mg2+ and Cl−. Plant and Soil, 125, 245–254. doi:10.1007/BF00010663.
Mass, E. V. (1993). Salinity and citriculture. Tree Physiology, 12, 196–216.
Muralitharan, M. S., Chandler, S., & Van Steveninck, R. F. M. (1992). Effects of NaCl and Na2SO4 on growth and solute composition of highbush blueberry (Vaccinium corymbosum). Australian Journal of Plant Physiology, 19, 155–164.
Niu, X., Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (1995). Ion homeostasis in NaCl stress environments. Plant Physiology, 109, 735–742.
O’Leary, J. W. (1984). The role of halophytes in irrigated agriculture. In R. C. Staples & G. H. Toenniessen (Eds.), Salinity tolerance in Plants: Strategies for Crop Improvement (pp. 285–300). New York: Wiley.
Pandya, J. B., Gohil, R. H., Patolia, J. S., Shah, M. T., & Parmar, D. R. (2006). A study on Salicornia (S. brachiata Roxb.) in salinity ingressed soils of India. International Journal of Agricultural Research, 1, 91–99.
Parida, A. K., Das, A. B., & Mohanty, P. (2004). Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. Journal of Plant Physiology, 161, 531–542. doi:10.1078/0176-1617-01084.
Rao, G. G., Nayak, A. K., Chinchmalatpure, A. R., Nath, A., & Babu, V. R. (2004). Growth and yield of Salvadora persica. A facultative halophytes grown on Saline Black Soil (Vertic Haplustept). Arid Land Research and Management, 18, 51–61. doi:10.1080/15324980490245013.
Reddy, M. P., & Kaur, M. (2008). Sodium fluoride induced growth and metabolic changes in Salicornia brachiata Roxb. Water, Air, and Soil Pollution, 188, 171–179. doi:10.1007/s11270-007-9533-7.
Reddy, M. P., Sanish, S., & Iyengar, E. R. R. (1992). Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata. Photosynthetica, 26, 273–279.
Renault, S., Croser, C., Franklin, J. A., & Zwiazek, J. J. (2001). Effects of NaCl and Na2SO4 on red-osier dogwood (Cornus stolonifera Michx.) seedlings. Plant and Soil, 233, 261–268. doi:10.1023/A:1010512021353.
Roxas, V. P., Lodhi, S. A., Garett, D. K., Mahan, J. R., & Allen, R. D. (2000). Stress tolerance in transgenic tobacco seedlings that over express glutathione S-transferase/glutathione peroxidase. Plant & Cell Physiology, 41, 1229–1234. doi:10.1093/pcp/pcd051.
Santos, I., Almeida, J., & Salema, R. (1999). The influence of UV–B radiation on the superoxide dismutase of maize, potato, sorghum, and wheat leaves. Canadian Journal of Botany, 77, 70–76. doi:10.1139/cjb-77-1-70.
Savouré, A., Thorin, D., Davey, M., Hua, X. J., Mauro, S., Van Montagu, M., et al. (1999). NaCl and CuSO4 treatments trigger distinct oxidative defence mechanisms in Nicotiana plumbaginifolia L. Plant, Cell & Environment, 22, 387–396. doi:10.1046/j.1365-3040.1999.00404.x.
Shalata, A., Mittova, V., Volokita, M., Guy, M., & Tal, M. (2001). Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiologia Plantarum, 112, 487–494. doi:10.1034/j.1399-3054.2001.1120405.x.
Shannon, M. C., Grieve, C. M., & Francois, L. C. (1994). Whole-plant response to salinity. In R. E. Wilkinson (Ed.), Plant environment interactions (pp. 199–244). New York: M Dekker Inc.
Shannon, L. N., Kay, E., & Lew, J. Y. (1966). Peroxidase isoenzymes from horse reddish roots – 1. Isolation and physiological properties. The Journal of Biological Chemistry, 241, 2166–2172.
Shaul, O. (2002). Magnesium transport and function in plants: the tip of the iceberg. Biometals, 15, 309–323. doi:10.1023/A:1016091118585.
Short, D. C., & Colmer, T. D. (1999). Salt tolerance in the halophyte Halosarcia pergranulata subsp. pergranulata. Annals of Botany, 83, 207–213. doi:10.1006/anbo.1998.0812.
Stelzer, R., & Läuchli, A. (1978). Salt and flooding tolerance of Puccinellia peisonis. III. Distribution and localization of ions in the plant. Zeitschrift fuÉr Pflanzenphysiologie, 88, 437–448.
Struglics, A., Fredlund, K. M., Konstantinov, Y. M., Allen, J. F., & Moller, I. M. (2000). Protein phosphorylation/dephosphosphorylation in the inner membrane of potato mitochondria. Federation of European Biochemical Societies Letters, 475, 213–217.
Tanji, K. K (1990). Agricultural salinity assessment and management. ASCE manual and reports on engineering practice, no. 71. New York: NY: American Society of Civil Engineers.
Tsugane, K. K., Kobayashi, K., Niwa, Y., Ohba, Y., Wada, K., & Kobayashi, H. (1999). A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. The Plant Cell, 11, 1195–1206.
Uchida, A., Jagendorf, A. T., Hibino, T., Takabe, T., & Takabe, T. (2002). Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 163, 515–523. doi:10.1016/S0168-9452(02)00159-0.
Umali, D. L. (1993). Irrigation induced salinity. A growing problem for development and environment, World Bank Technical Paper No. 215. The World Bank, Washington, DC, p. 78.
USEPA. (1980). A chemical hazard information profile; bromine and bromine compounds P54. EPA 560/11-80-011.
Wang, B., Lüttge, U., & Ratajczak, R. (2001). Effects of salt treatment and osmotic stress on V-ATPase and V-ATPase in leaves of the halophyte Suaeda salsa. Journal of Experimental Botany, 52, 2355–2365. doi:10.1093/jexbot/52.365.2355.
Zhang, H. X., & Blumwald, E. (2001). Transgenic salt tolerant tomato plants accumulate salt in the foliage but not in the fruits. Nature Biotechnology, 19, 765–768. Medline. doi:10.1038/90824.
Zhang, H. X., Hodson, J., Williams, J. P., & Blumwald, E. (2001). Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quantity in transgenic plants with increased vacuolar sodium accumulation. Proceedings of the National Academy of Sciences of the United States of America, 98, 12832–12836. doi:10.1073/pnas.231476498.
Zhao, F., Guo, S., Zhang, H. Y., & Zhao, Y. (2006). Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Science, 170, 216–224. doi:10.1016/j.plantsci.2005.08.017.
Acknowledgement
The author acknowledges Director Dr. P. K. Ghosh for encouragement and facilities and Dr. G. Ramachandraiah for help in bromide quantification.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Reddy, M.P. Bromide Tolerance in Salicornia brachiata Roxb, an Obligate Halophyte. Water Air Soil Pollut 196, 151–160 (2009). https://doi.org/10.1007/s11270-008-9764-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11270-008-9764-2


