Skip to main content
Log in

Bromide Tolerance in Salicornia brachiata Roxb, an Obligate Halophyte

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

In coastal marshy lands, halogen bromide concentration is reported to be generally higher than in the inland soils where, annual halophytic species naturally grow. The effect of bromide on plant responses is relatively less known. The objectives of this study were to assess the effect of sodium bromide (NaBr) on growth, photosynthetic pigments, tissue ions content and changes in enzymes activity in Salicornia brachiata, a salt marsh halophyte. Presence of NaBr in the root medium induced 200 percent increase in fresh mass and 30% increase in dry mass, compared to untreated control. Relative water content also increased significantly with NaBr treatment. Increase in fresh and dry mass was not associated with high photosynthetic efficiency as evidenced by decrease in photosynthetic pigments accumulation. However, inorganic ion analysis revealed that S. brachiata accumulated Na+ as a primary osmotica. The concentration of Na+ in NaBr treated plants was ∼4 fold higher than that measured in untreated controls and this was associated with significant reduction in K+, Ca2+, Mg2+ contents. Bromide content also increased significantly and accounted for 20 to 50 percent of dry weight. In addition, significant differences in the activities of superoxide dismutase (SOD), peroxidase (POX), catalase (CAT) and ATPase were observed in bromide treated plants. For the first time bromide tolerance in coastal halophyte was reported and the results suggest that bromide was not toxic to S. brachiata for growth and metabolism even at 600 mM. concentration and suggest that the species can be used in phytoremediation of bromide contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Apostol, K. G., Zwiazek, J. J., & MacKinnon, M. D. (2002). NaCl and Na2SO4 alter responses of jack pine (Pinus banksiana) seedlings to boron. Plant and Soil, 240, 321–329. doi:10.1023/A:1015753128876.

    Article  CAS  Google Scholar 

  • Apse, M. P., Aharon, G. S., Snedden, W. S., & Blumwald, E. (1999). Salt tolerance conferred by over expression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 285, 1256–1258. doi:10.1126/science.285.5431.1256.

    Article  CAS  Google Scholar 

  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplast. Polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    Article  CAS  Google Scholar 

  • Ayala, F., & O’Leary, J. W. (1995). Growth and physiology of Salicornia bigelovii Torr. At suboptimal salinity. International Journal of Plant Sciences, 156, 197–205. doi:10.1086/297241.

    Article  Google Scholar 

  • Ayala, F., O’Leary, J. W., & Schumaker, K. S. (1995). Increased vacuolar and plasma membrane H+-ATPase activities in Salicornia bigelovii Torr. in response to NaCl. Journal of Experimental Botany, 47, 25–32. doi:10.1093/jxb/47.1.25.

    Article  Google Scholar 

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an essay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287. doi:10.1016/0003-2697(71)90370-8.

    Article  CAS  Google Scholar 

  • Benavides, M. P., Marconi, P. L., Gallego, S. M., Comba, M. E., & Tomaro, M. L. (2000). Relationship between antioxidant defense systems and salt tolerance in Solannum tuberosum. Australian Journal of Plant Physiology, 27, 273–278.

    CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. doi:10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  • Cayyuela, E., Esta, M. T., Parra, M., Caro, M., & Bolarin, M. C. (2001). NaCl pre-treatment at the seedling stage enhances fruit yield of tomato irrigated with salt water. Plant and Soil, 230, 231–238. doi:10.1023/A:1010380432447.

    Article  Google Scholar 

  • Chang, S. C., & Kaufman, P. B. (2000). Effects of staurosporine, okadaic acid and sodium fluoride on protein phosphorylation in gravi-responding oat shoot pulvini. Plant Physiology and Biochemistry, 38, 315–323. doi:10.1016/S0981-9428(00)00745-2.

    Article  CAS  Google Scholar 

  • Cherian, S., & Reddy, M. P. (2000). Salt tolerance in the Halophyte Suaeda nudiflora moq: effect of NaCl on growth, ion accumulation and oxidative enzymes. Indian Journal of Plant Physiology, 5, 32–37.

    CAS  Google Scholar 

  • Cherian, S., & Reddy, M. P. (2003). Evaluation of NaCl tolerance in callus cultures of Suaeda nudiflora moq. Biologia Plantarum, 46, 193–198. doi:10.1023/A:1022838224429.

    Article  CAS  Google Scholar 

  • Cherian, S., Reddy, M. P., & Pandya, J. B. (1999). Studies on salt tolerance in Avicennia marina (forstk vierah): effect of NaCl salinity on growth, ion accumulation and enzyme activity. Indian Journal of Plant Physiology, 4, 266–270.

    CAS  Google Scholar 

  • Dat, J. F., Inzé, D., & Van Breusegem, F. (2001). Catalase-deficient tobacco plants: tools for in planta studies on the role of hydrogen peroxide. Redox Report, 6, 37–42. doi:10.1179/135100001101536012.

    Article  CAS  Google Scholar 

  • Debez, A. K., Hamed, B., Grignon, C., & Abdelly, C. (2004). Salinity effects on germination, growth and seed production of the halophyte Cakile maritime. Plant and Soil, 262, 179–189. doi:10.1023/B:PLSO.0000037034.47247.67.

    Article  CAS  Google Scholar 

  • Elkahoui, S., Hernández, J. A., Abdelly, C., Ghrir, R., & Limam, F. (2005). Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Science, 168, 607–613. doi:10.1016/j.plantsci.2004.09.006.

    Article  CAS  Google Scholar 

  • FAO. (1992). The use of saline waters for crop production. Irrigation and Drainage Papers, 48. Food and Agriculture Organization of the United Nations, Rome, p. 184.

  • FAO. (1995). Environmental impact assessment of irrigation and drainage projects. Irrigation and Drainage Papers, 53. Food and Agriculture Organization of the United Nations, Rome, p. 75.

  • Fidalgo, F., Santos, A., Santos, I., & Salema, R. (2004). Effects of long-term salt stress on antioxidant defense systems, leaf water relations and chloroplast ultrastructure of potato plants. The Annals of Applied Biology, 145, 185–192. doi:10.1111/j.1744-7348.2004.tb00374.x.

    Article  CAS  Google Scholar 

  • Flowers, T. J., Troke, P. F., & Yeo, A. R. (1977). The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology, 28, 89–121. doi:10.1146/annurev.pp.28.060177.000513.

    Article  CAS  Google Scholar 

  • Flowers, T. J., Garcia, A., Koyarna, M., & Yeo, A. R. (1997). Breeding for salt tolerance in crop plants - the role of molecular biology. Acta Physiologiae Plantarum, 19, 427–433.

    Article  CAS  Google Scholar 

  • Fornasiero, R. B. (2001). Phytotoxic effects of fluorides. Plant Science, 161, 979–985. doi:10.1016/S0168-9452(01)00499-X.

    Article  CAS  Google Scholar 

  • Fornasiero, R. B. (2003). Fluorides effects on Hypericum perforatum plants: first field observations. Plant Science, 165, 507–513. doi:10.1016/S0168-9452(03)00205-X.

    Article  CAS  Google Scholar 

  • Franklin, J. A., Zwiazek, J. J., Renault, S., & Croser, C. (2002). Growth and elemental composition of jack pine (Pinus banksiana) seedlings treated with sodium chloride and sodium sulfate. Trees (Berlin), 16, 325–330.

    CAS  Google Scholar 

  • Ghosh, P. K., Reddy, M. P., Pandya, J. B., Patolia, J. S., Waghela, S. M., Gandhi, M. R., et al. (2005). Preparation of nutritious salt of plant origin. US patent 6, 929, 809.

  • Giannopolitis, C. N., & Reis, S. K. (1977). Superoxide dismutase: occurrence in higher plants. Plant Physiology, 59, 309–314.

    Article  CAS  Google Scholar 

  • Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18, 227–255. doi:10.1016/S0735-2689(99)00388-3.

    Article  Google Scholar 

  • Glenn, E. P., & O’Leary, J. W. (1984). Relationship between salt accumulation and water content of dicotyledonous halophytes. Plant, Cell & Environment, 7, 253–261.

    CAS  Google Scholar 

  • Glenn, E. P., O’Leary, J. W., Waston, M. C., Thompson, T. L., & Kuehl, R. O. (1991). Salicornia bigelovii Torr.: an oilseed halophyte for seawater irrigation. Science, 251, 1065–1067. doi:10.1126/science.251.4997.1065.

    Article  CAS  Google Scholar 

  • Gómez, J. M., Hernàndez, J. A., Jiménez, A., Del Rio, L. A., & Sevilla, F. (1999). Differential response of antioxidative system of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radical Research, 31, 11–18. doi:10.1080/10715769900301261.

    Article  Google Scholar 

  • Hernàndez, J. A., Campillo, A., Jiménez, A., Alarcon, J. J., & Sevilla, F. (1999). Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. The New Phytologist, 141, 241–251. doi:10.1046/j.1469-8137.1999.00341.x.

    Article  Google Scholar 

  • Hernàndez, J. A., Jimenez, A., Mullineaux, P., & Sevilla, F. (2000). Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant, Cell & Environment, 23, 853–862. doi:10.1046/j.1365-3040.2000.00602.x.

    Article  Google Scholar 

  • Hernàndez, J. A., Olmos, E., Corpas, F. J., Sevilla, F., & Del Rio, L. A. (1995). Salt-induced oxidative stress in chloroplasts of pea plants. Plant Science, 105, 151–167. doi:10.1016/0168-9452(94)04047-8.

    Article  Google Scholar 

  • Ikan, R. (1969). Natural products. A laboratory guide. New York: Academic.

    Google Scholar 

  • Janick, J. (1999). The search for new food resources. Plant Biotechnology, 16, 7–32.

    Google Scholar 

  • Kamaluddin, M., & Zwiazek, J. J. (2003). Fluoride inhibits root water transport and affects leaf expansion and gas exchange in aspen (Populus tremuloides) seedlings. Physiologia Plantarum, 117, 368–375. Medline. doi:10.1034/j.1399-3054.2003.00040.x.

    Article  CAS  Google Scholar 

  • Kar, M., & Mishra, O. (1976). Catalase, peroxidase and polyphenol oxidase activity during rice leaf senescence. Plant Physiology, 57, 315–319.

    Article  CAS  Google Scholar 

  • Kasamo, K. (1979). Characterization of membrane bound Mg2+ activated ATPase isolated from the lower epidermis of tobacco leaves. Plant & Cell Physiology, 201, 281–292.

    Google Scholar 

  • Kaur, J., & Duffus, C. (1989). The effect of sodium fluoride on cereal seed germination and seedling growth. Plant, Cell & Environment, 12, 155–161. doi:10.1111/j.1365-3040.1989.tb01928.x.

    Article  CAS  Google Scholar 

  • Kennedy, B. F., & de Filippis, L. F. (1999). Physiological and oxidative response to NaCl of the salt tolerant Grevillea licifolia and the salt sensitive Grevillea arenaria. Journal of Plant Physiology, 155, 746–754.

    CAS  Google Scholar 

  • Khan, A. H., Ashraf, M. Y., Naqvi, S. S. M., Khanzada, B., & Ali, M. (1995). Growth, ion and solute contents of sorghum grown under NaCl and Na2So4 salinity stress. Acta Physiologiae Plantarum, 17, 261–268.

    CAS  Google Scholar 

  • Kim, C. K., & Weber, D. J. (1980). Isolation and characterization of adenosine triphosphatase from Salicornia pacifica var. utahensis. Plant & Cell Physiology, 21, 755–763.

    CAS  Google Scholar 

  • Klumpp, A., Domingos, M., & Pignata, M. L. (2000). Air pollution and vegetation damage in South America – state of knowledge and perspectives. In S. B. Agrawal & M. Agrawal (Eds.), Environmental pollution and plant responses (pp. 11–136). New York: CRC.

    Google Scholar 

  • Lee, D. H., Kim, Y. S., & Lee, C. B. (2001). The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). Journal of Plant Physiology, 158, 737–745. doi:10.1078/0176-1617-00174.

    Article  CAS  Google Scholar 

  • Lüttge, U., & Smith, A. C. (1984). Structural, biophysical, and biochemical aspects of the role of leaves in plant adaptation to salinity and water stress. In R. C. Staples & G. H. Toenniessen (Eds.), Salinity tolerance in plants: Strategies for crop improvement (pp. 125–150). New York: Wiley.

    Google Scholar 

  • Maggio, A., Reddy, M. P., & Robert, J. J. (2000). Leaf gas exchange and solute accumulation in the halophyte Salvadora persica grown at moderate salinity. Environmental and Experimental Botany, 44, 31–38. doi:10.1016/S0098-8472(00)00051-4.

    Article  CAS  Google Scholar 

  • Marcar, N. E., & Termaat, A. (1990). Effects of root-zone solutes on Eucalyptus camaldulensis and Eucalyptus bicostata seedlings: responses to Na+, Mg2+ and Cl. Plant and Soil, 125, 245–254. doi:10.1007/BF00010663.

    Article  CAS  Google Scholar 

  • Mass, E. V. (1993). Salinity and citriculture. Tree Physiology, 12, 196–216.

    Google Scholar 

  • Muralitharan, M. S., Chandler, S., & Van Steveninck, R. F. M. (1992). Effects of NaCl and Na2SO4 on growth and solute composition of highbush blueberry (Vaccinium corymbosum). Australian Journal of Plant Physiology, 19, 155–164.

    Article  CAS  Google Scholar 

  • Niu, X., Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (1995). Ion homeostasis in NaCl stress environments. Plant Physiology, 109, 735–742.

    CAS  Google Scholar 

  • O’Leary, J. W. (1984). The role of halophytes in irrigated agriculture. In R. C. Staples & G. H. Toenniessen (Eds.), Salinity tolerance in Plants: Strategies for Crop Improvement (pp. 285–300). New York: Wiley.

    Google Scholar 

  • Pandya, J. B., Gohil, R. H., Patolia, J. S., Shah, M. T., & Parmar, D. R. (2006). A study on Salicornia (S. brachiata Roxb.) in salinity ingressed soils of India. International Journal of Agricultural Research, 1, 91–99.

    Google Scholar 

  • Parida, A. K., Das, A. B., & Mohanty, P. (2004). Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. Journal of Plant Physiology, 161, 531–542. doi:10.1078/0176-1617-01084.

    Article  CAS  Google Scholar 

  • Rao, G. G., Nayak, A. K., Chinchmalatpure, A. R., Nath, A., & Babu, V. R. (2004). Growth and yield of Salvadora persica. A facultative halophytes grown on Saline Black Soil (Vertic Haplustept). Arid Land Research and Management, 18, 51–61. doi:10.1080/15324980490245013.

    Article  Google Scholar 

  • Reddy, M. P., & Kaur, M. (2008). Sodium fluoride induced growth and metabolic changes in Salicornia brachiata Roxb. Water, Air, and Soil Pollution, 188, 171–179. doi:10.1007/s11270-007-9533-7.

  • Reddy, M. P., Sanish, S., & Iyengar, E. R. R. (1992). Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata. Photosynthetica, 26, 273–279.

    Google Scholar 

  • Renault, S., Croser, C., Franklin, J. A., & Zwiazek, J. J. (2001). Effects of NaCl and Na2SO4 on red-osier dogwood (Cornus stolonifera Michx.) seedlings. Plant and Soil, 233, 261–268. doi:10.1023/A:1010512021353.

    Article  CAS  Google Scholar 

  • Roxas, V. P., Lodhi, S. A., Garett, D. K., Mahan, J. R., & Allen, R. D. (2000). Stress tolerance in transgenic tobacco seedlings that over express glutathione S-transferase/glutathione peroxidase. Plant & Cell Physiology, 41, 1229–1234. doi:10.1093/pcp/pcd051.

    Article  CAS  Google Scholar 

  • Santos, I., Almeida, J., & Salema, R. (1999). The influence of UV–B radiation on the superoxide dismutase of maize, potato, sorghum, and wheat leaves. Canadian Journal of Botany, 77, 70–76. doi:10.1139/cjb-77-1-70.

    Article  CAS  Google Scholar 

  • Savouré, A., Thorin, D., Davey, M., Hua, X. J., Mauro, S., Van Montagu, M., et al. (1999). NaCl and CuSO4 treatments trigger distinct oxidative defence mechanisms in Nicotiana plumbaginifolia L. Plant, Cell & Environment, 22, 387–396. doi:10.1046/j.1365-3040.1999.00404.x.

    Article  Google Scholar 

  • Shalata, A., Mittova, V., Volokita, M., Guy, M., & Tal, M. (2001). Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiologia Plantarum, 112, 487–494. doi:10.1034/j.1399-3054.2001.1120405.x.

    Article  CAS  Google Scholar 

  • Shannon, M. C., Grieve, C. M., & Francois, L. C. (1994). Whole-plant response to salinity. In R. E. Wilkinson (Ed.), Plant environment interactions (pp. 199–244). New York: M Dekker Inc.

    Google Scholar 

  • Shannon, L. N., Kay, E., & Lew, J. Y. (1966). Peroxidase isoenzymes from horse reddish roots – 1. Isolation and physiological properties. The Journal of Biological Chemistry, 241, 2166–2172.

    CAS  Google Scholar 

  • Shaul, O. (2002). Magnesium transport and function in plants: the tip of the iceberg. Biometals, 15, 309–323. doi:10.1023/A:1016091118585.

    Article  CAS  Google Scholar 

  • Short, D. C., & Colmer, T. D. (1999). Salt tolerance in the halophyte Halosarcia pergranulata subsp. pergranulata. Annals of Botany, 83, 207–213. doi:10.1006/anbo.1998.0812.

    Article  CAS  Google Scholar 

  • Stelzer, R., & Läuchli, A. (1978). Salt and flooding tolerance of Puccinellia peisonis. III. Distribution and localization of ions in the plant. Zeitschrift fuÉr Pflanzenphysiologie, 88, 437–448.

    CAS  Google Scholar 

  • Struglics, A., Fredlund, K. M., Konstantinov, Y. M., Allen, J. F., & Moller, I. M. (2000). Protein phosphorylation/dephosphosphorylation in the inner membrane of potato mitochondria. Federation of European Biochemical Societies Letters, 475, 213–217.

    CAS  Google Scholar 

  • Tanji, K. K (1990). Agricultural salinity assessment and management. ASCE manual and reports on engineering practice, no. 71. New York: NY: American Society of Civil Engineers.

    Google Scholar 

  • Tsugane, K. K., Kobayashi, K., Niwa, Y., Ohba, Y., Wada, K., & Kobayashi, H. (1999). A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. The Plant Cell, 11, 1195–1206.

    Article  CAS  Google Scholar 

  • Uchida, A., Jagendorf, A. T., Hibino, T., Takabe, T., & Takabe, T. (2002). Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 163, 515–523. doi:10.1016/S0168-9452(02)00159-0.

    Article  CAS  Google Scholar 

  • Umali, D. L. (1993). Irrigation induced salinity. A growing problem for development and environment, World Bank Technical Paper No. 215. The World Bank, Washington, DC, p. 78.

  • USEPA. (1980). A chemical hazard information profile; bromine and bromine compounds P54. EPA 560/11-80-011.

  • Wang, B., Lüttge, U., & Ratajczak, R. (2001). Effects of salt treatment and osmotic stress on V-ATPase and V-ATPase in leaves of the halophyte Suaeda salsa. Journal of Experimental Botany, 52, 2355–2365. doi:10.1093/jexbot/52.365.2355.

    Article  CAS  Google Scholar 

  • Zhang, H. X., & Blumwald, E. (2001). Transgenic salt tolerant tomato plants accumulate salt in the foliage but not in the fruits. Nature Biotechnology, 19, 765–768. Medline. doi:10.1038/90824.

    Article  CAS  Google Scholar 

  • Zhang, H. X., Hodson, J., Williams, J. P., & Blumwald, E. (2001). Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quantity in transgenic plants with increased vacuolar sodium accumulation. Proceedings of the National Academy of Sciences of the United States of America, 98, 12832–12836. doi:10.1073/pnas.231476498.

    Article  CAS  Google Scholar 

  • Zhao, F., Guo, S., Zhang, H. Y., & Zhao, Y. (2006). Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Science, 170, 216–224. doi:10.1016/j.plantsci.2005.08.017.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author acknowledges Director Dr. P. K. Ghosh for encouragement and facilities and Dr. G. Ramachandraiah for help in bromide quantification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muppala P. Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, M.P. Bromide Tolerance in Salicornia brachiata Roxb, an Obligate Halophyte. Water Air Soil Pollut 196, 151–160 (2009). https://doi.org/10.1007/s11270-008-9764-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9764-2

Keywords