Cesium Concentration Spatial Distribution Modeling by Point Cumulative Semivariogram

Abstract

The theoretical basis of the proposed technique is the cumulative variation of 137Cs measurements’ squared-differences between a reference and other sites. The change of the cumulative squared-differences with distance from the reference site is referred to as the point cumulative semivariogram (PCSV), which provides appropriate measure of cumulative similarity. Inspection of individual experimental PCSV provides local interpretation about the 137Cs radioactivity concentration around each site, whereas collective inspections provide possibility for grouping similar sites and hence identifying homogeneous sub-areas within the study area. It is also possible to prepare 137Cs radioactivity concentration maps based on pre-specified distances in each experimental PCSV, which lead to similarity levels. Such maps provide appreciation of 137Cs radioactivity concentration regional dependence in Keban Dam Lake, Turkey. Apart from the individual PCSV interpretations, the whole lake is divided into four distinctive classes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bazuhair, A. S. A., & Şen, Z. (1994). Cumulative semivariogram models of trace elements from springs in Saudi Arabia. Nordic Hydrology, 25, 345–358.

    CAS  Google Scholar 

  2. Clark, I. (1979). The semivariogram-Part 1. Engineering and Mining Journal, 7, 90–94.

    Google Scholar 

  3. Gómez, P., Garralón, A., Buil, B., Turrero, M. J., Sánchez, L., & de la Cruz, B. (2006). Modeling of geochemical processes related to uranium mobilization in the groundwater of a uranium mine. Science of the Total Environment, 366, 295–309 Medline. DOI 10.1016/j.scitotenv.2005.06.024.

    Article  CAS  Google Scholar 

  4. Håkanson, L., & Boulion, V. V. (2003). A model to predict how individual factors influence secchi depth variations among and within Lakes. International Review of Hydrobiology, 88, 212–232. DOI 10.1002/iroh.200390016.

    Article  Google Scholar 

  5. Hárdle, W., & Simar, L. (2003). Applied multivariate statistical analysis, 22nd ed. Tech Method & Data Technologies.

  6. Harms, I. H. (1997). Modelling the dispersion of 137Cs and 239Pu released from dumped waste in the Kara Sea. Journal of Marine Systems, 13, 1–19. DOI 10.1016/S0924-7963(96)00117-0.

    Article  Google Scholar 

  7. Isaaks, E. H., & Srivastava, R. M. (1989). Applied geostatistics (p. 561). New York: Oxford University Press.

    Google Scholar 

  8. Jaworowski, Z., Hoff, P., Hagen, J. O., & Maczek, W. (1997). A highly radioactive Chernobyl deposit in a Scandinavian Glacier. Journal of Environmental Radioactivity, 35, 91–108. DOI 10.1016/S0265-931X(96)00004-5.

    Article  CAS  Google Scholar 

  9. Johnson, R. A., & Wichern, D. W. (1982). Applied multivariate statistical analysis (p. 816). New Jersey: Prentice Hall.

    Google Scholar 

  10. Joshi, B., & Maule, C. (2000). Simple analytical models for interpretation of environmental tracer profiles in the vadose zone. Hydrological Processes, 14, 1503–1521. DOI 10.1002/1099-1085(20000615)14:8<1503::AID-HYP990>3.0.CO;2-Z.

    Article  Google Scholar 

  11. Journel, A. G., & Huijbregts, C. J. (1989). Mining geostatistics (p. 600). New York: Academic.

    Google Scholar 

  12. Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58, 1246–1266.

    CAS  Article  Google Scholar 

  13. Monte, L. (1998). Predicting the long term behaviour of 90Sr in lacustrine systems by a collective model. Ecological Modelling, 106, 141–159. DOI 10.1016/S0304-3800(97)00189-0.

    Article  CAS  Google Scholar 

  14. Özmen, H., Külahcı, F., Çukurovalı, A., & Dogru, M. (2004). Concentrations of heavy metal and radioactivity in surface water and sediment of Hazar Lake (Elazığ, Turkey). Chemosphere, 55, 401–408 Medline. DOI 10.1016/j.chemosphere.2003.11.003.

    Article  CAS  Google Scholar 

  15. Şahin, A. D., & Şen, Z. (2004). A new spatial prediction model and its application to wind records. Theoretical and Applied Climatology, 79, 45–54. DOI 10.1007/s00704-004-0037-8.

    Article  Google Scholar 

  16. Şen, Z. (1989). Cumulative semivariogram model of regionalized variables. Mathematical Geology, 21, 891–903. DOI 10.1007/BF00894454.

    Article  Google Scholar 

  17. Şen, Z. (1995). Regional air pollution assessment by cumulative semivariogram technique. Atmospheric Environment, 29, 543–548. DOI 10.1016/1352-2310(94)00246-H.

    Article  Google Scholar 

  18. Şen, Z. (1996). The integral of the semivariogram: a powerful method for adjusting the semivariogram. Mathematical Geology, 28, 371–373. DOI 10.1007/BF02083207.

    Article  Google Scholar 

  19. Şen, Z. (1998). Point cumulative semivariogram for identification of heterogeneities in Regional Seismicity of Turkey. Mathematical Geology, 30, 767–787. DOI 10.1023/A:1021704507596.

    Article  Google Scholar 

  20. Şen, Z. (1999). Terrain topography classification for wind energy generation. Renew Energy, 16, 904–907. DOI 10.1016/S0960-1481(98)00304-8.

    Article  Google Scholar 

  21. Şen, Z., & Habib, Z. Z. (1998). Point cumulative semivariogram of areal precipitation in mountainous regions. Journal of Hydrology, 205, 81–91. DOI 10.1016/S0022-1694(97)00146-7.

    Article  Google Scholar 

  22. Taylor, G. I. (1925). Eddy motion in the atmosphere. Philosophical transactions of the Royal Society of London, 215, 1.

    Article  Google Scholar 

  23. Van der Perk, M., Lev, T., Gillett, A. G., et al. (2000). Spatial modelling of transfer of long-lived radionuclides from soil to agricultural products in the Chernigov region, Ukraine. Ecological Modelling, 128, 35–50. DOI 10.1016/S0304-800(99)00225-2.

    Article  Google Scholar 

  24. Yoschenko, V. I., Kashparov, V. A., Levchuk, S. E., Glukhovskiy, A. S., Khomutinin, Y. V., et al. (2006). Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part II. Modeling the transport process. Journal of Environmental Radioactivity, 87, 260–278 Medline. DOI 10.1016/j.jenvrad.2005.12.003.

    Article  CAS  Google Scholar 

  25. Zhang, J. (2002). Uncertainty in geographical information (p. 277). London, UK: CRC.

    Google Scholar 

Download references

Acknowledgements

This work is a part of the post-doctorate research project supported by The Scientific and Technical Research Council of Turkey (TUBITAK). The authors would like to thank TUBITAK for financial support and encouragement.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fatih Külahcı.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Külahcı, F., Şen, Z. & Kazanç, S. Cesium Concentration Spatial Distribution Modeling by Point Cumulative Semivariogram. Water Air Soil Pollut 195, 151 (2008). https://doi.org/10.1007/s11270-008-9734-8

Download citation

Keywords

  • Cesium
  • Model
  • Heterogeneity
  • Lake
  • Radioactivity
  • Point cumulative semivariogram