Skip to main content

Species Diversity and Community Structure of Ground-Dwelling Spiders in Unpolluted and Moderately Heavy Metal-Polluted Habitats

Abstract

This study was conducted to investigate the relationship between ground-dwelling spider communities and the degree of soil contamination of heavy metals, Cd and Pb. Six sites were selected according to expected differences in Cd and Pb contamination levels in soil and similarity in vegetation composition. Ground-dwelling spiders were collected monthly in 2003 and 2004 by pitfall trapping. Species diversity of ground-dwelling spiders between unpolluted and moderately polluted sites was not significantly different although the value was higher in the unpolluted site. Species diversity tended to decrease with increasing Pb levels in soil although no statistical significance was obtained. No trend was shown between species diversity and Cd levels in soil. The community structure of ground-dwelling spiders was similar for the two types of sites. Overall ground-dwelling spider communities may be not sensitive enough to discriminate moderate heavy metal contamination levels in soil. However, among the dominant spider families, the composition and structure of Linyphiidae separated unpolluted and moderately polluted sites. Pardosa astrigera and P. laura (Lycosidae) have a potential as heavy metal accumulator indicator species and Oedothorax insulanus (Linyphiidae) has a potential as a heavy metal sentinel indicator species.

This is a preview of subscription content, access via your institution.

Fig 1
Fig 2
Fig 3

References

  1. Ann, Y. H., Kim, I. S., Kim, E. K., & Kim, M. H. (2003). Contamination and clean of soil environment. Seoul: Goomibook in Korean).

    Google Scholar 

  2. Bargagli, R. (1998). Trace elements in terrestrial plants. Berlin: Springer.

    Google Scholar 

  3. Churchill, T. B. (1997). Spiders as ecological indicators, an overview for Australia. Memoirs of Museum Victoria, 56, 331–337.

    Google Scholar 

  4. Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117–143.

    Article  Google Scholar 

  5. Clarke, K. R., & Gorley, R. N. (2001). PRIMER v5: user manual/tutorial. Plymouth: PRIMER-E.

    Google Scholar 

  6. Clarke, K. R., & Warwick, R. M. (2001). Change in marine communities: An approach to statistical analysis and interpretation, (2nd ed.). Plymouth: PRIMER-E.

    Google Scholar 

  7. Clements, W. H., & Newman, M. C. (2002). Community ecotoxicolgy. Chichester: Wiley.

    Google Scholar 

  8. Fountain, M. T., Brown, V. K., Gange, A. C., Symondson, W. O. C., & Murray, P. J. (2007). The effects of the insecticide chlorpyrifos on spider and Collembola communities. Pedobiologia, 51, 147–158.

    Article  CAS  Google Scholar 

  9. Heininger, P., Hoss, S., Claus, E., Pelzer, J., & Traunspurger, W. (2007). Nematode communities in contaminated river sediments. Environmental Pollution, 146, 64–76.

    Article  CAS  Google Scholar 

  10. Hopkin, S. P., & Harmes, C. A. C. (1994). Zinc, among a “cocktail” of metal pollutants, is responsible for the absence of the terrestrial isopod Procellio acaber form the vicinity of a primary smelting works. Ecotoxicology, 2, 68–78.

    Article  Google Scholar 

  11. Jung, C. -S., Lee, S. B., Jung, M. -P., Lee, J. -H., Lee, S., & Lee, S. H. (2005). Accumulated heavy metal content in wolf spider, Pardosa astrigera (Araneae: Lycosidae), as a bioindicator of exposure. Journal of Asia-Pacific Entomology, 8, 185–192.

    CAS  Article  Google Scholar 

  12. Jung, M. -P., Kim, S. -T., Kim, H., & Lee, J. -H. (2007). Risk analysis of heavy metal contamination habitats a wolf spider, Pardosa astrigera (Araneae: Lycosidae). In C. A. Brebbia (Ed.), Environmental health risk IV (pp. 229–236). Southampton: WIT.

    Google Scholar 

  13. Jung, M. -P., Kim, S. -T., Kim, H., & Lee, J. -H. (2008). Biodiversity and community structure of ground-dwelling spiders in four different field margin types of agricultural landscapes in Korea. Applied Soil Ecology, 38, 185–195.

    Article  Google Scholar 

  14. Klok, C., Goedhart, P. W., & Vandecasteele, B. (2007). Field effects of pollutants in dynamic environments. A case study on earthworm populations in river floodplains contaminated with heavy metals. Environmental Pollution, 147, 26–31.

    Article  CAS  Google Scholar 

  15. Koponen, S., & Niemela, P. (1993). Ground-living spiders in a polluted pine forest, SW Finland. Bollettino della Accademia Gioenia di scienze naturali, 26, 331–226.

    Google Scholar 

  16. Maelfait, J. P. (1996). Soil spiders and bioindiation. In N. M. Van Straalen, & D. A. Krivolutsky (Eds.), Bioindicator systems for soil pollution (pp. 165–178). Dordrecht: Kluwer.

    Google Scholar 

  17. Marc, P., Canard, A., & Ysnel, F. (1999). Spiders (Araneae) useful for pest limitation and bioindication. Agriculture Ecosystems & Environment, 74, 229–273.

    Article  Google Scholar 

  18. Migliorini, M., Pigino, G., Caruso, T., Fanciulli, P. P., Leonzio, C., & Bernini, F. (2005). Soil communities (Acari Oribatida; Hexapoda Collembola) in a clay pigeon shooting range. Pedobiologia, 49, 1–13.

    Article  Google Scholar 

  19. Ministry of Environment (ME). (2005). Soil Groundwater Information System.

  20. Nadal, M., Schuhmacher, M., & Domingo, J. L. (2004). Metal pollution of soils and vegetation in an area with petrochemical industry. Science of the Total Environment, 321, 59–69.

    Article  CAS  Google Scholar 

  21. Nahmani, J., & Lavelle, P. (2002). Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France. European Journal of Soil Biology, 38, 297–300.

    Article  CAS  Google Scholar 

  22. Pearson, D. L. (1994). Selecting indicator taxa for quantitative assessment of biodiveristy. Philosophical Transaction of the Royal Society of London Series B, 345, 75–79.

    Article  CAS  Google Scholar 

  23. Platnick, N. I. (2007). The world spider catalog, version 8.0. American Museum of Natural History. Retrieved from http://research.amnh.org/entomology/spiders/catalog/index.html.

  24. Posthuma, L., & van Straalen, N. M. (1993). Heavy-metal adaptation in terrestrial invertebrates: a review of occurrence, genetics, physiology and ecological consequences. Comparative Biochemistry and Physiology Part C, 106, 11–38.

    Google Scholar 

  25. Sanchez-Moreno, S., & Navas, A. (2007). Nematode diversity and food web condition in heavy metal polluted soils in a river basin in southern Spain. European Journal of Soil Biology, 43, 166–179.

    Article  CAS  Google Scholar 

  26. SAS institute (2003). SAS OnlineDoc®, Version 9.1. Cary, NC: SAS Institute.

    Google Scholar 

  27. Spurgeon, D. J., Sandifer, R. D., & Hopkin, S. P. (1996). The use of macro-invertebrates for population and community monitoring of metal contamination – Indicator taxa, effect parameters and the need for a soil invertebrate prediction and classification scheme (SIVPACS). In N. M. Van Straalen, & D. A. Krivolutsky (Eds.), Bioindicator systems for soil pollution (pp. 95–110). Dordrecht: Kluwer.

    Google Scholar 

  28. Uetz, G. W. (1991). Habitat structure and spider foraging. In S. S. Bell, E. D. Mccoy, & H. R. Mushinsky (Eds.), Habitat structure (pp. 325–348). London: Chapman and Hall.

    Google Scholar 

  29. Vandecasteele, B., Samyn, J., Quataert, P., Muys, B., & Tack, F. M. G. (2004). Earthworm biomass as additional information for risk assessment of heavy metal biomagnification: a case study for dredged sediment-derived soils and polluted floodplain soils. Environmental Pollution, 129, 363–375.

    Article  CAS  Google Scholar 

  30. Wheater, C. P., Cullen, W. R., & Bell, J. R. (2000). Spider communities as tools in monitoring reclaimed limestone quarry landforms. Landscape Ecology, 15, 401–406.

    Article  Google Scholar 

  31. Zaitsev, A. S., & Van Straalen, N. M. (2001). Species diversity and metal accumulation in orbatid mites (Acari, Oribatida) of forests affected by a metallurgical plant. Pedobiologia, 45, 467–479.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Ministry of Environment (091-081-043), and the Brain Korea 21 program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joon-Ho Lee.

Appendix

Appendix

Table 3 List of ground-dwelling spiders in study sites

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jung, MP., Kim, ST., Kim, H. et al. Species Diversity and Community Structure of Ground-Dwelling Spiders in Unpolluted and Moderately Heavy Metal-Polluted Habitats. Water Air Soil Pollut 195, 15 (2008). https://doi.org/10.1007/s11270-008-9723-y

Download citation

Keywords

  • Ground-dwelling spider community
  • Heavy metal
  • Species diversity
  • Linyphiidae
  • Lycosidae
  • Oedothorax insulanus
  • Pardosa astigera
  • Pardosa laura