Skip to main content

Advertisement

Log in

Sequencing Zerovalent Iron Treatment with Carbon Amendments to Remediate Agrichemical-Contaminated Soil

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Agrichemical spills and discharges to soil can cause point-source contamination of surface and ground waters. When high contaminant concentrations inhibit natural attenuation in soils, chemical treatments can be used to promote degradation and allow application of treated soils to agricultural lands. This approach was used to remediate soil containing >650 mg atrazine, >170 mg metolachlor and >18,000 mg nitrate kg−1. Results indicated a decrease in metolachlor concentration to <1 mg kg−1 within 95 days of chemical treatment with zerovalent iron (Fe0, 5% w/w) and aluminum sulfate (Al2(SO4)3, 2% w/w) but after one year >150 mg atrazine and >7000 mg nitrate kg−1 remained. Laboratory experiments confirmed that subsequent additions of sucrose (table sugar) to the chemically pretreated soil promoted further reductions in atrazine and nitrate concentrations. Field-scale results showed that adding 5% (w/w) sucrose to windrowed and pretreated soil significantly reduced atrazine (<38 mg kg−1) and nitrate (<2,100 mg kg−1) concentrations and allowed for land application of the treated soil. These results provide evidence that zerovalent iron in combination with Al2(SO4)3 and sucrose can be used for on-site, field-scale treatment of pesticide- and nitrate-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adam, M. L., Comfort, S. D., Zhang, T. C., & Morley, M. C. (2005). Evaluating biodegradation as a primary and secondary treatment for removing RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) from a perched aquifer. Bioremediation Journal, 9, 1–11.

    Article  CAS  Google Scholar 

  • Agrawal, A., & Tratnyek, P. G. (1996). Reduction of nitro aromatic compounds by zero-valent iron metal. Environmental Science and Technology, 30, 153–160.

    Article  CAS  Google Scholar 

  • Alexander, M. (1977). Introduction to soil microbiology, Second Edition. New York: Wiley.

    Google Scholar 

  • Bruns-Nagel, D., Breitung, J., Löw, E., Steinbach, K., Gorontzy, T., Kahl, M., et al. (1996). Microbial transformation of 2,4,6-trinitrotoluene in aerobic soil columns. Applied Environmental Microbiology, 62, 2651–2656.

    CAS  Google Scholar 

  • Cheng, F., Muftikian, R., Fernando, Q., & Korte, N. (1997). Reduction of nitrate to ammonia by zero-valent iron. Chemosphere, 35, 2689–2695.

    Article  CAS  Google Scholar 

  • Comfort, S. D., Shea, P. J., Machacek, T. A., Gaber, H., & Oh, B. -T. (2001). Field-scale remediation of a metolachlor-contaminated spill site using zerovalent iron. Journal of Environmental Quality, 30, 1636–1643.

    CAS  Google Scholar 

  • Comfort, S. D., Shea, P. J., Machacek, T. A., & Satapanajaru, T. (2003). Pilot-scale treatment of RDX-contaminated soil with zerovalent iron. Journal of Environmental Quality, 32, 1717–1725.

    CAS  Google Scholar 

  • Dombek, T., Dolan, E., Schultz, J., & Klarup, D. (2001). Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions. Environmental Pollution, 111, 21–27.

    Article  CAS  Google Scholar 

  • Doong, R. A., & Lai, Y. L. (2006). Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron. Chemosphere, 64, 371–378.

    Article  CAS  Google Scholar 

  • Dzantor, E. K., Felsot, A. S., & Beck, M. J. (1993). Bioremediating herbicide-contaminated soils. Applied Biochemistry and Biotechnology, 39–40, 621–630.

    Article  Google Scholar 

  • Eykholt, G. R., & Davenport, D. T. (1998). Dechlorination of the chloroacetanilide herbicides alachlor and metolachlor by iron metal. Environmental Science and Technology, 32, 1482–1487.

    Article  CAS  Google Scholar 

  • Fathepure, B. Z., & Tiedje, J. M. (1999). Anaerobic bioremediation: microbiology principles and applications. In D. C. Adriano, J. -M. Bollag, W. T. Frankenberger, & R.C. Sims (Eds.) Bioremediation of contaminated soils, Agronomy Monograph 37 (pp. 339–396). Madison: ASA.

    Google Scholar 

  • Felsot, A. S., Mitchell, J. K., Bicki, T. J., & Frank, J. F. (1993). Landfarming of herbicide-contaminated soil and potential for enhancing biodegradation by use of organic amendments. Illinois Fertilizer Conference Proceedings. Retrieved from http://frec.cropsci.uiuc.edu/1993/report17/index.htm.

  • Gan, J. Y., & Koskinen, W. C. (1998). Pesticide fate and behavior in soil at elevated concentrations. In P. C. Kearney, & T. Roberts (Eds.) Pesticide remediation in soils and water (pp. 59–84). New York: Wiley.

    Google Scholar 

  • Gillham, R. W., & O’Hannesin, S. F. (1994). Enhanced degradation of halogenated aliphatics by zerovalent iron. Ground Water, 32, 958–967.

    Article  CAS  Google Scholar 

  • Grant, M. A., & Williams, F. D. (1982). Bacterial metabolism under conditions representing pesticide disposal pits. Journal of Environmental Science and Health B, 17, 393–407.

    CAS  Google Scholar 

  • Gu, B., Phelps, T. J., Liang, L., Dickey, M. I., Roh, Y., Kinsall, B. L., et al. (1999). Biogeochemical dynamics in zero-valent iron columns: implications for permeable reactive barriers. Environmental Science and Technology, 33, 2170–2177.

    Article  CAS  Google Scholar 

  • Huang, Y. H., Zhang, T. C., Shea, P. J., & Comfort, S. D. (2003). Effects of oxide coating and selected cations on nitrate reduction by iron metal. Journal of Environmental Quality, 32, 1306–1315.

    CAS  Google Scholar 

  • Hundal, L. S., Singh, J., Bier, E. L., Shea, P. J., Comfort, S. D., & Powers, W. L. (1997). Removal of TNT and RDX from water and soil using iron metal. Environmental Pollution, 26, 896–904.

    CAS  Google Scholar 

  • Jordan, T. E., Weller, D. E., & Correll, D. I. (1998). Denitrication in surface soils of a riparian forest: effects of water, nitrate and sucrose additions. Soil Biology and Biochemistry, 30, 833–843.

    Article  CAS  Google Scholar 

  • Leeson, A., Hapeman, C. J., & Shelton, D. R. (1993). Biomineralization of atrazine ozonation products. Application to the development of a pesticide waste disposal system. Journal of Agricultural and Food Chemistry, 41, 983–987.

    Article  CAS  Google Scholar 

  • Monson, S. J., Ma, L., Cassada, D. A., & Spalding, R. F. (1998). Confirmation and method development for dechlorinated atrazine from reductive dehalogenation of atrazine with Fe0. Analytica Chemica Acta, 19041, 1–8.

    Google Scholar 

  • Moorman, T. B., Cowan, J. K., Arthur, E. L., & Coats, J. R. (2001). Organic amendments to enhance herbicide biodegradation in contaminated soils. Biology and Fertility of Soils, 33, 541–545.

    Article  CAS  Google Scholar 

  • Nam, K., Rodriguez, W., & Kukor, J. J. (2001). Enhanced degradation of polycyclic aromatic hydrocarbons by biodegradation combined with a modified Fenton oxidation. Chemosphere, 45, 11–20.

    Article  CAS  Google Scholar 

  • Reardon, E. J. (1995). Anaerobic corrosion of granular iron: measurement and interpretation of hydrogen evolution rates. Environmental Science and Technology, 29, 2936–2945.

    Article  CAS  Google Scholar 

  • Reid, B. J., Fermor, T. R., & Semple, K. T. (2002). Feasibility of using mushroom compost for the bioremediation of PAH-cotaminated soil. Environmental Pollution, 118, 65–73.

    Article  CAS  Google Scholar 

  • Satapanajaru, T., Comfort, S. D., & Shea, P. J. (2003a). Enhancing metolachlor destruction rates with aluminum and iron salts during zerovalent iron treatment. Journal of Environmental Quality, 32, 1726–1734.

    Article  CAS  Google Scholar 

  • Satapanajaru, T., Shea, P. J., Comfort, S. D., & Roh, Y. (2003b). Green rust and iron oxide formation influences metolachlor dechlorination during zerovalent iron treatment. Environmental Science and Technology, 37, 5219–5227.

    Article  CAS  Google Scholar 

  • Schipper, L. A., Barkle, G. F., & Vojvodic-Vukovic, M. (2005). Maximum rates of nitrate removal in a denitrification wall. Journal of Environmental Quality, 34, 1270–1276.

    Article  CAS  Google Scholar 

  • Schipper, L. A., & Vojvodic-Vukovic, M. (2000). Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust. Ecological Engineering, 14, 269–278.

    Article  Google Scholar 

  • Schoen, S. R., & Winterlin, W. L. (1987). The effects of various soil factors and amendments on the degradation of pesticide mixtures. Journal of Environmental Science and Health B, 22, 347–377.

    Article  CAS  Google Scholar 

  • Shea, P. J., Machacek, T. A., & Comfort, S. D. (2004). Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environmental Pollution, 132, 183–188.

    Article  CAS  Google Scholar 

  • Singh, J., Shea, P. J., Hundal, L. S., Comfort, S. D., Zhang, T. C., & Hage, D. S. (1998). Iron-enhanced remediation of water and soil containing atrazine. Weed Science, 46, 381–88.

    CAS  Google Scholar 

  • Till, B. A., Weathers, L. J., & Alvarez, P. J. J. (1998). Fe(0)-supported autotrophic denitration. Environmental Science and Technology, 32, 634–639.

    Article  CAS  Google Scholar 

  • Ueda, T., Shinogi, Y., & Yamaoka, M. (2006). Biological nitrate removal using sugar-industry wastes. Paddy and Water Environment, 4, 139–144.

    Article  Google Scholar 

  • Wang, D., Huang, Q., Wang, C., Ma, M., & Wang, Z. (2007). The effects of different electron donors on anaerobic transformations and denitrification processes in Lake Taihu sediments. Hydrobiologia, 581, 71–77.

    Article  CAS  Google Scholar 

  • Winkler, E. S. (1991). A septic tank effluent treatment system for enhanced nitrate removal. Thesis. University of Massachusetts, Amherst, MA.

Download references

Acknowledgements

Funding was provided by grants from the Nebraska Environmental Trust and EPA-EPSCoR. Additional support and on-site assistance was provided by Compliance Advisory Services and the Heartland Co-op, Hastings, NE and The Nebraska Agri-Business Association, Lincoln, NE. This paper is a contribution of University of Nebraska-Lincoln Agricultural Research Division Projects NEB-40-002 and 40-019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Shea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boparai, H.K., Shea, P.J., Comfort, S.D. et al. Sequencing Zerovalent Iron Treatment with Carbon Amendments to Remediate Agrichemical-Contaminated Soil. Water Air Soil Pollut 193, 189–196 (2008). https://doi.org/10.1007/s11270-008-9682-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9682-3

Keywords