Skip to main content
Log in

Remediation of Atrazine-contaminated Soil and Water by Nano Zerovalent Iron

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Atrazine-contaminated soil may require remediation to mitigate ground and surface water contamination. We determined the effectiveness of nano zerovalent iron (nano ZVI) to dechlorinate atrazine (2-chloro-4ethylamino-6-iso-propylamino-1,3,5-triazine) in contaminated water and soil. This study determined the effects of iron sources, solution pH, Pd catalyst and presence of Fe or Al sulfate salts on the destruction of atrazine in water and soil. Our results indicate nano ZVI can be successfully used to remediate atrazine in water and soil. Aqueous solution of atrazine (30 mg l−1) was treated with 2% (w/v) of nano ZVI and 5% (w/v) of commercial ZVI. Although, iron dose in nano ZVI treatment was less than that in commercial ZVI treatment, atrazine destruction kinetic rate (k obs) of nano ZVI treatment (1.39 days−1) was around seven times higher than that of commercial ZVI treatment (0.18 days−1). Reductive dechlorination was the major process in destruction of atrazine by nano ZVI. The dechlorination product was 2-ethyl-amino-4-isopropylamino-1,3,5-triazine. Lowering the pH from 9 to 4 increased the destruction kinetic rates of atrazine by nano ZVI. Moreover, nano ZVI/Pd enhanced destruction kinetic rates of atrazine (3.36 day−1). Pd played the important role as a catalyst during treatment of atrazine by nano ZVI. Atrazine destruction kinetic rates were greatly enhanced in both contaminated water and soil treatments by nano ZVI when sulfate salts of Fe(II), Fe(III) or Al(III) was add with the following order of removal rates: Al (III) (2.23 day−1) > Fe (III) (2.04 day−1) > Fe(II) (1.79 day−1). The same results were found in atrazine-nano ZVI-soil incubation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Agrawal, A., & Tratnyek, P. G. (1996). Reduction of nitro aromatic compounds by zero-valent iron metal. Environmental Science and Technology, 30, 153–160.

    Article  CAS  Google Scholar 

  • Alowitz, M. J., & Scherer, M. M. (2002). Kinetics of nitrate, nitrite and Cr(VI) reduction by iron metal. Environmental Science and Technology, 36, 299–306.

    Article  CAS  Google Scholar 

  • American Society for Testing and Materials. (1998). Method D422-63. Standard test method for particle size analysis in soils. West Conshohocken, PA.

  • Amonette, J. E., Workman, D. J., & Kennedy, D. W. (2000). Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environmental Science and Technology, 34, 4606–4613.

    Article  CAS  Google Scholar 

  • Blowes, D. W., Ptacek, C. J., & Jambor, J. L. (1997). In situ remediation of Cr (Vr)-contaminated groundwater using permeable reactive walls: Laboratory studies. Environmental Science and Technology, 31, 3348–3357.

    Article  CAS  Google Scholar 

  • Cheng, R., Wang, J.-L., & Zhang, W.-X. (2007a). Comparison of reductive dechlorination of p-chlorophenol using Fe0 and nanozized Fe0. Journal of Hazardous Materials, 144, 334–339.

    Article  CAS  Google Scholar 

  • Cheng, R., Wang, J.-L., & Zhang, W.-X. (2007b). Reductive dechlorination of p-chlorophenol by nanoscale iron. Biomedical Environmental Science, 20, 410–413.

    CAS  Google Scholar 

  • Comber, S. D. W. (1999). Abiotic persistence of atrazine and simazine in water. Pesticide Science, 55, 696–702.

    Article  CAS  Google Scholar 

  • Comfort, S. D., Shea, P. J., Machacek, T. A., Gaber, H., & Oh, B. T. (2001). Field scale remediation of a metolachlor-contaminated spill site using zerovalent iron. Journal of Environmental Quality, 30, 1636–1643.

    Article  CAS  Google Scholar 

  • Dombek, T., Dolan, F., Schultz, J., & Klarup, D. (2001). Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions. Environmental Pollution, 111, 21–27.

    Article  CAS  Google Scholar 

  • Doong, R.-A., & Lai, Y.-A. (2006). Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron. Chemosphere, 64, 371–378.

    Article  CAS  Google Scholar 

  • Eykholt, G. R., & Davenport, D. T. (1998). Dechlorination of the chloroacetanilide herbicide alachlor and metolachlor by iron metal. Environmental Science and Technology, 32, 1481–1487.

    Google Scholar 

  • Farrell, J., Kason, M., Melitas, N., & Li, T. (2002). Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environmental Science and Technology, 34, 514–521.

    Article  CAS  Google Scholar 

  • Fiedor, J. N., Bostick, W. D., Jarabek, R. J., & Farrel, J. (1998). Understanding the mechanism of uranium removal from groundwater by zero-valent iron using X-ray photoelectron spectroscopy. Environmental Science and Technology, 32, 1466–1473.

    Article  CAS  Google Scholar 

  • Ghauch, A., & Suptil, J. (2000). Remediation of s-triazines contaminated water in laboratory scale apparatus using zerovalent iron powder. Chemosphere, 41, 1835–1843.

    Article  CAS  Google Scholar 

  • Gillham, R. W., & O’Hannesin, S. F. (1994). Enhanced degradatinon of halogenated aliphatics by zero-valent iron. Ground Water, 32, 958–967.

    Article  CAS  Google Scholar 

  • Gregory, K. B., Larese-Casanova, P., Parkin, G. F., & Scherer, M. M. (2004). Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine by FeII bound to magnetite. Environmental Science and Technology, 38, 1408–1414.

    Article  CAS  Google Scholar 

  • Huang, Y. H., Zhang, T. C., Shea, P. J., & Comfort, S. D. (2003). Effects of oxide coating and selected cations on nitrate reduction by iron metal. Journal of Environmental Quality, 32, 1306–1315.

    CAS  Google Scholar 

  • Johnson, T. L., Scherer, M. M., & Trantnyek, P. G. (1996). Kinetics of halogenated organic compound degradation by iron metal. Environmental Science and Technology, 30, 2634–2640.

    Article  CAS  Google Scholar 

  • Joo, S. H., & Zhao, D. (2008). Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere, 70, 418–425.

    Google Scholar 

  • Kanel, S. R., Manning, B., Charlet, L., & Choi, H. (2005). Removal of arsenic(III) from groundwater by nano scale zero-valent iron. Environmental Science and Technology, 39, 1291–1298.

    Article  CAS  Google Scholar 

  • Klausen, J., Trober, S. P., Haderlein, S. B., & Schwarzenbach, R. P. (1995). Reduction of substituted nitrobenzenes by Fe(II) in aqueous mineral suspensions. Environmental Science and Technology, 29, 2396–2404.

    Article  CAS  Google Scholar 

  • Lien, H.-L., & Zhang, W.-X. (2001). Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 191, 97–105.

    Article  CAS  Google Scholar 

  • Light, T. S. (1972). Standard solution for redox potential measurement. Analytical Chemistry, 44, 1038–1039.

    Article  CAS  Google Scholar 

  • Liou, Y. H., Lo, S.-L., Lin, C.-J., Kuan, W.-H., & Weng, S. C. (2005). Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles. Journal of Hazardous Materials, 127, 102–110.

    Article  CAS  Google Scholar 

  • Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S., & Lowry, G. V. (2005). TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science and Technology, 39, 1338–1345.

    Article  CAS  Google Scholar 

  • McBride, M. B. (1994). Environmental Chemistry of Soils. New York: Oxford University Press.

    Google Scholar 

  • Meisner, L. F., Roloff, B. D., & Belluck, D. A. (1993). In vitro effects of N-nitrosoatrazine on chromosome breakage. Archives Environmental Contamination and Toxicology, 24, 108–112.

    Article  CAS  Google Scholar 

  • Monson, S. J., Ma, L., Cassada, D. A., & Spalding, R. F. (1998). Confirmation and method development for dechlorinated atrazine from reductive dehalogenation of atrazine with Fe0. Analytica Chimica Acta, 373, 153–160.

    Article  CAS  Google Scholar 

  • Muftikian, R., Fernando, Q., & Korte, N. (1995). A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Water Research, 29, 2434–2439.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommer, L. E. (1982). Total carbon, organic carbon, and organic matter. In A. L. Page (Ed.). Methods of Soil Analysis. 2nd Ed. ASA Monogr. 9(2). Amer. Soc. Agron. Madison, WI, 1980; 539–579.

  • Nurmi, J. T., Tratnyek, P. G., Sarathy, V., Baer, D. R., Amonette, J. E., Pecher, K., Wang, C., Linehan, J. C., Matson, D. W., Penn, R. L., & Driessen, M. D. (2005). Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environmental Science and Technology, 39, 1221–1230.

    Google Scholar 

  • Park, J., Comfort, S. D., Shea, P. J., & Kim, J. S. (2005). Increasing Fe0-mediated HMX destruction in highly contaminated soil with didecyldimethylaammonium bromide surfactant. Environmental Science and Technology, 39, 9683–9688.

    Article  CAS  Google Scholar 

  • Ponder, S. M., Darab, J. G., & Mallouk, T. E. (2000). Remediation of Cr (VI) and Pb(II) aqueous solutions using supported, nanoscale zerovalent-iron. Environmental Science and Technology, 34, 2564–2569.

    Article  CAS  Google Scholar 

  • Rhoades, J. D. (1982). Cation exchange capacity. In: A. L. Page (Ed.), Methods of soil analysis, Part 2 Chemical and microbiological properties, 2nd edition. Agronomy 9: 149–157.

  • Russell, J. D., Cruz, M., & White, J. L. (1968). Mode of chemical degradation of s-triazines by montmorillonite. Science, 160, 1340–1342.

    Article  CAS  Google Scholar 

  • Samorjai, G. A. (1994). Introduction to surface chemistry and catalysis. New York: Willey/Interscience.

    Google Scholar 

  • Satapanajaru, T., Comfort, S. D., & Shea, P. J. (2003a). Enhancing metolachlor destruction rates with aluminum and iron salts during zerovalent iron treatment. Journal of Environmental Quality, 32, 1726–1734.

    CAS  Google Scholar 

  • Satapanajaru, T., Shea, P. J., Comfort, S. D., & Roh, Y. (2003b). Green rust and iron oxide formation influences metolachlor dechlorination during zerovalent iron treatment. Environmental Science and Technology, 37, 5219–5227.

    Article  CAS  Google Scholar 

  • Satapanajaru, T., Anurakpongsatorn, P., & Pengthamkeerati, P. (2006). Remediation of DDT-contaminated water and soil by using pretreated iron byproducts from the automotive industry. Journal of Environmental Science and Health, Part B, 41, 1291–1303.

    Google Scholar 

  • Sayles, D. G., You, G., Wang, M., & Kupferle, M. J. (1997). DDT, DDD and DDE dechlorination by zerovalent iron. Environmental Science and Technology, 31, 3448–3454.

    Article  CAS  Google Scholar 

  • Schwertmann, U., & Cornell, R. M. (1991). Iron oxides in the laboratory. New York: VCH Publ.

    Google Scholar 

  • Shea, P. A., Machacek, T. A., & Comfort, S. D. (2004). Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environmental Pollution, 132, 183–188.

    Google Scholar 

  • Singh, J., Shea, P. J., Hundal, L. S., Comfort, S. D., Zhang, T. C., & Hage, D. S. (1998). Iron-enhanced remediation of water and soil containing atrazine. Weed Science, 46, 381–388.

    CAS  Google Scholar 

  • Stratton, G. W. (1984). Effects of the herbicide atrazine and its degradation products alone and in combination, on phototrophic organisms. Archives Environmental Contamination and Toxicology, 13, 35–42.

    Article  CAS  Google Scholar 

  • Sun, Y.-P., Li, X.-Q., Cao, J., Zhang, W.-X., & Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120, 47–56.

    Article  CAS  Google Scholar 

  • Sweeny, K. H. (1981). The reductive treatment of industrial wastewaters: 2: Process applications. Page 72–78 in G.F. Bennett, et. American Institute of Chemical Engineers Symposium, ser. 209, Water-1980.

  • Till, B. A., Weathers, L. J., & Alvarez, P. J. J. (1998). Fe(0)-supported autotrophic denitrification. Environmental Science and Technology, 32, 634–639.

    Article  CAS  Google Scholar 

  • Varanasi, P., Fullana, A., & Sidhu, S. (2007). Remediation of PCB contaminated soils using iron nano-particles. Chemosphere, 66, 1031–1038.

    Article  CAS  Google Scholar 

  • Wang, Z.-D., Gamber, D. S., & Langford, C. H. (1990). Interaction of atrazine with Laurentian fulvic acid: binding and hydrolysis. Analytica Chimica Acta, 232, 181–188.

    Article  CAS  Google Scholar 

  • Wang, C.-B., & Zhang, W.-X. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science and Technology, 31, 2154–2156.

    Article  CAS  Google Scholar 

  • Ware, G. W. (1986). Fundamentals of pesticides: A self-instruction guide (pp. 8–32nd ed.). Fresno, CA: Thomson Publications.

    Google Scholar 

  • Zhang, W.-X. (2003). Nanoscale iron particles for environmental remediation: an overview. Journal of Nanoparticle Research, 5, 323–332.

    Article  CAS  Google Scholar 

  • Zhang, W.-X., Wang, C.-B., & Lien, H.-L. (1998). Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 40, 387–395.

    Article  CAS  Google Scholar 

  • Zhu, B.-W., Lim, T.-T., & Feng, J. (2006). Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe0 particles supported on chitosan and silica. Chemosphere, 65, 1137–1145.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to The Thailand Research Fund (TRF) (MRG-4880140) and Faculty of Science, Kasetsart University, (ScTRF-2549) for financial support. We also thank Department of Environmental Sciences, Kasetsart University, Bangkok, Thailand for instrumental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Satapanajaru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satapanajaru, T., Anurakpongsatorn, P., Pengthamkeerati, P. et al. Remediation of Atrazine-contaminated Soil and Water by Nano Zerovalent Iron. Water Air Soil Pollut 192, 349–359 (2008). https://doi.org/10.1007/s11270-008-9661-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9661-8

Keywords