Water, Air, and Soil Pollution

, Volume 191, Issue 1–4, pp 305–318 | Cite as

Kinetic and Equilibrium Modeling for Cr(III) and Cr(VI) Removal from Aqueous Solutions by Citrus reticulata Waste Biomass

  • Ammara Zubair
  • Haq Nawaz Bhatti
  • Muhammad Asif Hanif
  • Faiza Shafqat
Article

Abstract

The pulp left after the extraction of juice from Citrus reticulate (kinnow), is a waste material, which was used as a potential sorbent for Cr(III) and Cr(VI) in the present study. The effect of experimental parameters such as pH, biosorbent dosage, biosorbent particle size, initial metal concentrations, temperature, shaking speed and sorption time on the Cr removal is apparent from the obtained results. The Freundlich isotherm and pseudo second order kinetic models fitted well to the data of Cr(III) and Cr(VI) biosorption by Citrus reticulata waste biomass. Effect of several pretreatments such as gases, natural coagulant and many other chemicals on Cr(III) and Cr(VI) sorption capacity of Citrus reticulata waste biomass was first time analyzed in the present study. The metal sorption capacity of Citrus reticulata waste biomass after a specific pretreatment was not only related to the nature of chemical but also strongly dependent on the oxidation state of the metal.

Keywords

Cr (III) Cr(VI) Biosorption Kinetics Citrus reticulata Pretreatment 

References

  1. Ahmet, C., Semra, I., Cansu, F., & Figen, C. (2005). Pb+2 biosorption by pretreated fungal biomass. Turkish Journal of Biology, 29, 23–28.Google Scholar
  2. Akhtar, M. N., Sivarama, K. S., & Maruthi, P. M. (1996). Mechanism of metal ion biosorption by fungal biomass. Biometal, 9(1), 21–28.Google Scholar
  3. Aksu, Z. (2001). Equilibrium and kinetic modelling of cadmium(II) biosorption by C. vulgaris in a batch system: Effect of temperature. Separation and Purification Technology, 21, 285–294.CrossRefGoogle Scholar
  4. Aksu, Z., & Kutsal, T. A. (1991). A bioseparation process for removing Pb(II) ions from wastewater by using C. vulgaris. Journal of Chemical Technology and Biotechnology, 52(1), 108–118.Google Scholar
  5. Bai, S. R., & Abraham, T. E. (2001). Biosorption of Cr(VI) from aqueous solution by Rhizopus nigricans. Bioresource Technology, 79, 73–104.CrossRefGoogle Scholar
  6. Barrera, H., Nunez, F. U., Bilyeu, B., & Diaz, C. B. (2006). Removal of chromium and toxic ions presents in mine drainage by Ectodermis of Opuntia. Journal of Hazardous Materials, 136, 846–853.CrossRefGoogle Scholar
  7. Benguella, B., & Benaissa, H. (2002). Cadmium removal from aqueous solution by chitin: Kinetic and equilibrium studies. Water Research, 36(10), 2463–2474.CrossRefGoogle Scholar
  8. Beveridge, T. J., & Murray, R. G. E. (1980). Sites of metal deposition in the cell wall of Bacillus subtilis. Journal of Bacteriology, 141(2), 876–887.Google Scholar
  9. Bhattacharyya, K. G., & Sharma, A. (2004). Adsorption of Pb(II) from aqueous solution by Azadirachta indica (Neem) leaf powder. Journal of Hazardous Materials, 113, 97–109.CrossRefGoogle Scholar
  10. Bhatti, H. N., Mumtaz, B., Hanif, M. A., & Nadeem, R. (2007). Removal of Zn(II) ions from aqueous solution using Moringa oleifera Lam. (horseradish tree) biomass. Process Biochemistry, 42, 547–553.CrossRefGoogle Scholar
  11. Bishnoi, N. R., & Garima, G. A. (2004). Biosorption of copper from aqueous solution using algal biomass. Journal of Scientific and Industrial Research, 63, 813–816.Google Scholar
  12. Bishnoi, N. R., Kumar, R., Kumar, S., & Rani, S. (2007). Biosorption of Cr(III) from aqueous solution using algal biomass Spirogyra spp. Journal of Hazardous Materials, 145, 142–147.CrossRefGoogle Scholar
  13. Boddu, V. M., Abburi, K., Talbott, J. L., & Smith, E. D. (2003). Removal of Cr(VI) from wastewater using a new composite Chitosan biosorbent. Environmental Science & Technology, 37(19), 4449–4456.CrossRefGoogle Scholar
  14. Brierley, J. A., Brierley, C. L., Decker, R. F., & Goyack, G. M. (1985). European patent application No. 85112810, Publication No. 0 181 497.Google Scholar
  15. Chand, S., Agarwal, V. K., & Kumar, P. (1994). Removal of hexavalent Cr from wastewater by adsorption. Indian Journal of Environmental Health, 36, 151–158.Google Scholar
  16. Chen, J. P., & Yang, L. (2005). Chemical modification of Sargassum sp. for prevention of organic leaching and enhancement of uptake during metal biosorption. Industrial & Engineering Chemistry Research, 44, 9931–9942.CrossRefGoogle Scholar
  17. Cheng, M. H., Patterson, J. W., & Minear, R. E. (1975). Heavy metal uptake by activated sludge. Journal Water Pollution Control Federation, 47, 362–376.Google Scholar
  18. Cohen-Shoel, N., Ilzycer, D., Gilath, I., & Tel-Or, E. (2002). The involvement of pectin in Sr2+ biosorption by Azolla. Water, Air and Soil Pollution, 135(1–4), 195–205.CrossRefGoogle Scholar
  19. Cordero, B., Loderio, P., Herrero, R., & de-Vicente, M. E. S. (2004). Biosorption of cadmium by Fucus spiralis. Environmental Chemistry, 1, 180–187.CrossRefGoogle Scholar
  20. Cossich, E. S., Tavares, C. R. G., & Ravagnani, T. M. K. (2002). Biosorption of Cr(III) by Sargassum sp. Biomass. E. Journal of Biotechnology, 5(2), 133–140.Google Scholar
  21. Deng, S., & Ting, Y. P. (2005). Characterization of PEI-modified biomass and biosorption of Cu (II), Pb (II) and Ni (II) . Water Research, 39(10), 2167–2177.CrossRefGoogle Scholar
  22. Deo, N., & Ali, M. (1992). Optimization of a new low cost adsorbent in removal of Cr(VI) from wastewater. Indian Journal of Environmental Protection, 12, 828–834.Google Scholar
  23. Dow, J. M., & Rubery, P. H. (1977). Chemical fraction of the cell walls of mycelial and yeast like forms of Mucor rouxii: A comparative study of the polysaccharide and glycoprotein components. Journal of General Microbiology, 99, 29–41.Google Scholar
  24. Drake, L. R., Shan, L., Gary, R. D., & Jackson, J. P. (1996). Chemical modification and metal binding studies of Datura innoxia. Environmental Science & Technology, 30(1), 110–114.CrossRefGoogle Scholar
  25. Fourest, E., & Roux, J. (1992). Heavy metal biosorption by fungal mycelial by product: mechanism and influence of pH. Applied Microbiology and Biotechnology, 37, 399–403.CrossRefGoogle Scholar
  26. Fourest, E., & Volesky, B. (1996). Contribution of sulpho-nate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environmental Science & Technology, 30, 277–282.CrossRefGoogle Scholar
  27. Gaad, G. M. (1990). Fungi and yeasts for metal accumulation, in microbial mineral recovery. In H. L. Lehrlich, & C. L. Brierley (Eds.) Microbial mineral recovery. Chapter 11 (pp. 249–275). New York: McGraw-Hill.Google Scholar
  28. Galun, M., Galun, E., Siegel, B. Z., Keller, P., Lehr, H., & Siegel, S. M. (1987). Removal of metal ions from aqueous solutions by Penicillum biomass: Kinetic and uptake parameters. Water, Air and Soil Pollution, 33, 359–371.CrossRefGoogle Scholar
  29. Gardea-Torresday, J. L., Cano-Aguilera, I., Tiemann, J. K., Webb, R., & Gutierrez-Corona, F. (1995). Copper binding by inactivated cells of Mucor rouxii. Proceeding of the 10th Annual Conference on Hazardous Waste Research (23rd–24th May, Manhattan, Kansas, USA), pp. 33–40.Google Scholar
  30. Gupta, V. K., Shrivastava, A. K., & Jain, N. (2001). Biosorption of chromium(VI) from aqueous solution by green algae Spirogyra species. Water Research, 35, 4079–4085.CrossRefGoogle Scholar
  31. Hanif, M. A., Nadeem, R., Bhatti, H. N., Ahmad, N. R., & Ansari, T. M. (2007). Ni(II) biosorption by Cassia fistula (golden Shower) biomass. Journal of Hazardous Materials, 139, 345–355.CrossRefGoogle Scholar
  32. Huang, C., & Huang, C. P. (1996). Application of Aspergillus oryzae and Rhizopus oryzae for Cu(II) removal. Water Research, 30, 1985–1990.CrossRefGoogle Scholar
  33. Jalali, R., Ghafourain, H., Asef, Y., Davarpanah, S. J., & Sepehr, S. (2002). Removal and recovery of lead using nonliving biomass of marine algae. Journal of Hazardous Materials, 92, 253–262.CrossRefGoogle Scholar
  34. Jianlong, W. (2002). Biosorption of copper (II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochemistry, 37(8), 847–850.CrossRefGoogle Scholar
  35. Jnr, M. H., & Spiff, A. I. (2005). Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (wild cocoyam) biomass. Electronic Journal of Biotechnology, 8(2), 162–169.CrossRefGoogle Scholar
  36. Kapoor, A., & Viraraghvan, T. (1998). Biosorption of heavy metals on Aspergillus niger: Effect of pretreatment. Bioresource Technology, 63, 109–113.CrossRefGoogle Scholar
  37. Kratochvil, D., Pimentel, P., & Volesky, B. (1998). Removal of trivalent and Cr(VI) by seaweed biomass. Environmental Science & Technology, 32, 2693–2698.CrossRefGoogle Scholar
  38. Lazaro, N., Sevilla, A. L., Morales, S., & Marques, A. M. (2003). Heavy metal biosorption by gellan gum beads. Water Research, 37, 2118–2126.CrossRefGoogle Scholar
  39. Loaec, M., Olier, R., & Guezennec, J. (1997). Uptake of lead, cadmium and zinc by a novel bacterial expolysaccharide. Water Research, 31(5), 1171–1179.CrossRefGoogle Scholar
  40. Loukidou, M. X., Zouboulis, A. I., Karapantsios, T. D., & Matis, K. A. (2004). Equilibrium and kinetic modeling of Cr(VI) biosorption by Aeromonas cavicic. Colloid Surfaces A, 242, 93–104.CrossRefGoogle Scholar
  41. Marja, E., Gonzalez, R., Williams, C. J., & Gardiner, P. H. E. (2001). Study of the mechanisms of Cadmium biosorption by dealginated seaweed waste. Environmental Science & Technology, 35, 3025–3030.CrossRefGoogle Scholar
  42. McGahren, W. J., Perkinson, G. A., Growich, J. A., Leese, R. A., & Ellestad, G. A. (1984). Chitosan by fermentation. Process Biochemistry, 19, 88–90.Google Scholar
  43. Mittleman, M. W., & Geesey, G. G. (1985). Copper binding characteristics of exopolymers from a freshwater sediment bacterium. Applied and Environmental Microbiology, 49, 846–851.Google Scholar
  44. Moreno-Castilla, C., Carrasco-Marin, F., Maldonado-Hodar, F. J., & Rivera-Utrilla, J. (1997). Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content. Carbon, 36, 145–151.CrossRefGoogle Scholar
  45. Muraleedharan, T. R., & Venkobachar, C. (1990a). Mechanism of cobalt biosorption. Biotechnology and Bioengineering, 33, 823–831.Google Scholar
  46. Muraleedharan, T. R., & Venkobachar, C. (1990b). Mechanism of biosorption of copper (II) by Ganoderma lucidum. Biotechnology and Bioengineering, 35, 320–325.CrossRefGoogle Scholar
  47. Nomanbhay, S. F., & Palanisamy, K. (2005). Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electronic Journal of Biotechnology, 8(1), 44–53.CrossRefGoogle Scholar
  48. Ozer, A., & Ozer, D. (2003). Comparitive study of the biosorption of Pb (II), Ni (II) and Cr(VI) ions onto S. cerevisiae: Determination of biosorption heats. Journal of Hazardous Materials, 100, 219–229.CrossRefGoogle Scholar
  49. Papageorgiou, S. K., Katsaros, F. K., Kouvelos, E. P., Nolan, J. W., Deit, H. L., & Kanellopoulos, N. K. (2006). Heavy metal sorption by calcium alginate beads from Laminaria digitata. Journal of Hazardous Materials, 137, 1765–1772.CrossRefGoogle Scholar
  50. Park, D., Yun, Y. S., & Park, J. M. (2005). Studies on Cr(VI) biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere, 60(10), 1356–1364.CrossRefGoogle Scholar
  51. Quek, S. Y., Al-Duri, B., Wasel, D. A. J., & Forster, C. F. (1998a). Coir as a biosorbent of copper and lead. Process safety and Environmental Protection, 76, 50–54.CrossRefGoogle Scholar
  52. Quek, S. Y., Wasel, D. A. J., & Forster, C. F. (1998b). The use of sago waste for the sorption of lead and copper. Water SA, 24, 251–256.Google Scholar
  53. Sar, P., Kazy, S. K., Asthana, R. K., & Singh, S. P. (1999). Metal adsorption and desorption by lyophilized pseudomonas aeruginosa. International Biodeterioration and Biodegradation, 44, 101–110.CrossRefGoogle Scholar
  54. Saravanane, R., Sundararajan, T., & Sivamurthyreddy, S. (2002). Efficiency of chemically modified low cost adsorbents for the removal of heavy metals from wastewater. Indian Journal of Environmental Health, 44, 78–81.Google Scholar
  55. Schiewer, S., & Volesky, B. (2000). Biosorption process for heavy metal removal. In R. R. lovely (Ed.) Environmental microbe–metal interaction (pp. 329–362). Washington, DC: ASM Press.Google Scholar
  56. Srinath, T., Verma, T., Ramteke, P. W., & Garg, S. K. (2002). Cr(VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 48, 427–435.CrossRefGoogle Scholar
  57. Tsui, M. T. K., Cheung, K. C., Tam, N. F. Y., & Wong, M. H. (2006). A comparative study on metal sorption by brown seaweed. Chemosphere, 65, 51–57.CrossRefGoogle Scholar
  58. Ucun, H., Bayhan, Y. K., Kaya, Y., Cakici, A., & Algur, O. F. (2002). Biosorption of chromium(Vl) from aqueous solutions by cone biomass of Pituis sylvestris. Bioresource technology, 85, 155–158.CrossRefGoogle Scholar
  59. Veglio, F., Esposito, A., & Reverberi, A. P. (2003). Standerdization of heavy metal biosorption tests: equilibrium and modeling study. Process biochemistry, 38, 953–961.CrossRefGoogle Scholar
  60. Volesky, B. (1990). Biosorption of heavy metals. Biotechnology progress, 11, 235–250.CrossRefGoogle Scholar
  61. Volesky B. (2003). Sorption and biosorption. BV-Sorbex Inc., St. Lambert, Quebec, Canada, p. 316.Google Scholar
  62. Waranusantigul, P., Pokethitiyook, P., Kruatrachue, M., & Upatham, E. S. (2003). Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environnement & Pollution, 125, 385–392.CrossRefGoogle Scholar
  63. Whistler, R., & Daniel, T. R. (1985). Carbohydrates. In O. R. Fennema (Ed.) Food chemistry (pp. 96–105). New York: Marcel Dekker.Google Scholar
  64. Yan, G., & Viraraghavan, T. (2000). Effect of pretreatment on the bioadsorption of heavy metals on Mucor rouxii. Water SA, 26(1), 119–124.Google Scholar
  65. Yun, Y. S., Park, D., Park, J. M., & Volesky, B. (2001). Biosorption of trivalent chromium on the brown seaweed biomass. Environmental Science & Technology, 35(21), 4353–4358.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ammara Zubair
    • 1
  • Haq Nawaz Bhatti
    • 1
  • Muhammad Asif Hanif
    • 1
    • 2
  • Faiza Shafqat
    • 1
  1. 1.Industrial Biotechnology Laboratory, Department of ChemistryUniversity of AgricultureFaisalabadPakistan
  2. 2.Rose Laboratory, Institute of Horticultural SciencesUniversity of AgricultureFaisalabadPakistan

Personalised recommendations