Skip to main content
Log in

Trace Element Concentrations in Saltmarsh Soils Strongly Affected by Wastes from Metal Sulphide Mining Areas

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Soil and water samples were analysed for trace metals and As in two watercourses and 14 sampling plots in a salt marsh polluted by mine wastes in SE Spain. Groundwater levels, soil pH and Eh were measured ‘in situ’ for a 12-month period in each sampling plot, and total calcium carbonate was also determined. Low concentrations of soluble metals (maximum Mn 1.089 mg L−1 and maximum Zn 0.553 mg L−1) were found in the watercourses. However, total metal contents were extremely high in the soils of a zone of the salt marsh (maximum 1,933 mg kg−1 of Mn, 62,280 mg kg−1 of Zn, 16,845 mg kg−1 of Pb, 77 mg kg−1 of Cd, 418 mg kg−1 of Cu and 725 mg kg−1 of As), and soluble metals in the pore water reached 38.7 mg L−1 for Zn, 3.15 mg L−1 for Pb, 48.0 mg L−1 for Mn, 0.61 mg L−1 for Cd and 0.29 mg L−1 for As. Variable concentrations with depth indicate a possible re-mobilisation of the metals, which could be related to spatial and temporal variations of water table level, pH and Eh and to the presence of calcium carbonate. A tendency for the Eh to decrease in the warmest months and to increase in the coldest ones was found, especially, in plots that received water with a high content of dissolved organic carbon. Hence, the existence of nutrient effluent-enriched water may modify the physical–chemical conditions of the soil–water system and influence metal mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Álvarez-Rogel, J., Jiménez-Cárceles, F. J., & Egea, C. (2006). Phosphorus and nitrogen content in the water of a coastal wetland in the Mar Menor lagoon (SE Spain): Relationships with effluents from urban and agricultural areas. Water, Air and Soil Pollution, 173, 21–38.

    Article  Google Scholar 

  • Álvarez-Rogel, J., Ramos, M. J., Delgado, M. J., & Arnaldos, R. (2004). Metals in soils and above-ground biomass of plants from a salt marsh polluted by mine wastes in the coast of the Mar Menor lagoon, SE Spain. Fresenius Environmental Bulletin, 13, 274–278.

    Google Scholar 

  • Auernheimer, C., Chinchon, S., & Pina, J. A. (1996). Lead pollution inn bivalve shells. Mar Menor, Spain. Arch. Sc. Genève, 49, 87–98.

    CAS  Google Scholar 

  • Carbonell-Barrachina, A. A., Jugsujinday, A., Burlo, F., DeLaune, R. P., & Patrick Jr., W. H. (1999). Arsenic chemistry in municipal sewage sludge as affected by redox potential and pH. Water Research, 34, 216–224.

    Article  Google Scholar 

  • Carbonell-Barrachina, A. A., Rocamora, A., García-Gomis, C., Martínez-Sánchez, F., & Burló, F. (2004). Arsenic and zinc biogeochemistry in pyrite mine waste from the Aznalcóllar environmental disaster. Geoderma, 122, 195–203.

    Article  CAS  Google Scholar 

  • Cheng, S., Grosse, W., Karrenbrock, F., & Thoennessen, M. (2002). Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecological Engineering, 18, 317–325.

    Article  Google Scholar 

  • Conesa, H. M., & Jiménez-Cárceles, F. J. (2007). The Mar Menor lagoon (SE Spain): A singular natural ecosystem threatened by human activities. Marine Pollution Bulletin, DOI 10.1016/j.marpolbul.2007.05.007.

  • Conesa, H. M., Robinson, B. H., Schulin, R., & Nowack, B. (2007). Growth of Lygeum spartum in acid mine tailings: Response of plants developed from seedlings, rhizomes and at field conditions. Environmental Pollution, 145, 700–707.

    Article  CAS  Google Scholar 

  • García-Pintado, J., Martínez-Mena, M., Barberá, G. G., Alvadalejo, J., & Castillo, V. M. (2007). Anthropogenic nutrient sources and loads from a Mediterranean catchment into a coastal lagoon: Mar Menor, Spain. The Science of the Total Environment, 373, 220–239.

    Article  Google Scholar 

  • Huerta-Díaz, M. A., & Morse, J. W. (1992). Pyritization of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta, 56, 2681–2702.

    Article  Google Scholar 

  • Jacob, D. L., & Otte, M. L. (2003). Conflicting processes in the wetland plant rhizosphere: Metal retention or mobilization? Water, Air and Soil Pollution, 3, 91–104.

    CAS  Google Scholar 

  • Jiménez-Cárceles, F. J., Egea, C., Rodríguez-Caparrós, A. B., Barbosa, O. A., Delgado, M. J., Ortiz, R., & Álvarez-Rogel, J. (2006). Contents of nitrogen, ammonium, phosphorus, pesticides and heavy metals, in a salt marsh on the coast of the Mar Menor lagoon (SE Spain). Fresenius Environmental Bulletin, 15(5), 370–378.

    Google Scholar 

  • Kirk, G. (2004). The biogeochemistry of submerged soils. Chichester: Wiley.

    Google Scholar 

  • Marín-Guirao, L., Marín, A., Lloret, J., Martínez-López, E., & García-Fernández, A. J. (2005). Effects of mining wastes on a seagrass ecosystem: Metal accumulation and bioavailability, seagrass dynamics and associated community structure. Marine Environmental Research, 60, 317–337.

    Article  Google Scholar 

  • Mays, P. A., & Edwards, G. S. (2001). Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. Ecological Engineering, 16, 487–500.

    Article  Google Scholar 

  • Masscheleyn, P. H., & Patrick, W. H. Jr. (1994). Selenium, arsenic and chromium redox chemistry in wetland soils and sediments. In D. C. Adriano, Z. S. Chen, & S. S. Yang (Eds.), Biogeochemistry of trace elements. (pp. 615–625). Georgia.

  • Morse, J. W. (1994). Interactions of trace metals with authigenic sulphide minerals: Implications for their bioavailability. Marine Chemistry, 46, 1–6.

    Article  CAS  Google Scholar 

  • O’Sullivan, A. D., Murray, D. A., & Otte, M. L. (2000). Rehabilitating mine tailings water using constructed wetlands. In D. W. Lee, & S. G. Richarson (Eds.), 17th Annual meeting for the surface mining and reclamation: A new era for land reclamation. Proceedings of the international meeting of the American Society for Surface Mining and Reclamation (pp. 438–445). Tampa, Florida.

  • Otero, X. L., Huerta-Diaz, M. A., & Macías, F. (2000). Heavy metal geochemistry of saltmarsh soils from the Ría of Ortigueria (mafic and ultramafic areas, NW Iberian Peninsula). Environmental Pollution, 110, 285–296.

    Article  CAS  Google Scholar 

  • Otero, X. L., & Macías, F. (2001). Soil phase iron in high salt marsh soils in relation to redox potential. Fresenius Environmental Bulletin, 10, 674–678.

    CAS  Google Scholar 

  • Otero, X. L., & Macías, F. (2002). Spatial and seasonal variation in heavy metals in interstitial water of salt marsh soils. Environmental Pollution, 120, 183–190.

    Article  CAS  Google Scholar 

  • Otero, X. L., & Macías, F. (2003). Spatial variation in pyritization of trace metals in salt-marsh soils. Biogeochemistry, 62, 59–86.

    Article  CAS  Google Scholar 

  • Robles-Arenas, V. M., Rodríguez, R., García, C., Manteca, J. I., & Candela, L. (2006). Sulphide-mining impacts in the physical environment: Sierra de Cartagena-La Unión (SE Spain) case study. Environmental Geology, 51, 47–64.

    Article  CAS  Google Scholar 

  • Van den Berg, G. A., Gustav, J. P., Van der Heijdt, L. M., & Zwosman, J. J. G. (1999). Mobilisation of heavy metals in contaminated sediments in the river Meuse, The Netherlands. Water, Air and Soil Pollution, 116, 567–586.

    Article  Google Scholar 

  • Vepraskas, M. J., & Faulkner, S. P. (2001). Redox chemistry of hidrics soils. In J.L. Richarson, & M.J. Vepraskas (Eds.)Wetland soils (pp. 85–107). Florida: Lewis Publishers.

    Google Scholar 

Download references

Acknowledgments

Support for this research was provided by the Ministerio de Ciencia y Tecnología of Spain (REN 2001–2142). H. M. Conesa has a post-doctoral grant supported by the Fundación Séneca-Agencia de Ciencia y Tecnología of the Comunidad Autónoma de la Región de Murcia (Spain). F.J. Jiménez-Cárceles had a grantee financed by the Caja Mediterráneo (CAM). We also thank J. Mari Belchí from the Language Service of the Universidad Politécnica de Cartagena, and Dr. David J. Walker from Institute for Research and Agrarian Development of Murcia (IMIDA-Murcia) for improving the English translation. Finally, we acknowledge the valuable collaboration and efficiency of A. Belen Rodríguez-Caparrós, from the Servicio de Apoyo a la Investigación (SAIT) of the Universidad Politécnica de cartagena, in the management of the ICP-MS and TOC-VCSH equipments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Álvarez-Rogel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez-Cárceles, F.J., Álvarez-Rogel, J. & Conesa Alcaraz, H.M. Trace Element Concentrations in Saltmarsh Soils Strongly Affected by Wastes from Metal Sulphide Mining Areas. Water Air Soil Pollut 188, 283–295 (2008). https://doi.org/10.1007/s11270-007-9544-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9544-4

Keywords

Navigation