Skip to main content

Advertisement

Log in

Emissions of Greenhouse Gases CH4 and N2O from Low-gradient Streams in Agriculturally Developed Catchments

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Lentic wetlands are usually regarded as the most important natural freshwater sources of methane (CH4) and nitrous oxide (N2O) to the atmosphere, and very few studies have quantified the importance of lowland streams in trace gas emissions. In this study, we estimated fluxes of CH4 and N2O in three macrophyte-rich, lowland agricultural streams in New Zealand, to place their trace gas emissions in context with other sources and investigate the value of minimising their emissions from agricultural land. All three streams were net sources of both gases, with emission of CH4 ranging from <1 to 500 μmol m−2 h−1 and of N2O ranging from <1 to 100 μmol m−2 h−1 during mid-summer. For CH4, both turbulent diffusion across the surface and ebullition of sediment gas bubbles were important transport processes, with ebullition accounting for 20–60% of the emissions at different sites. The emissions were similar on a per area basis to other major global sources of CH4 and N2O. Although small on a catchment scale compared to emissions from intensively grazed pastures, they were significant relative to low-intensity pastures and other agricultural land uses. Because hydraulic variables (viz. depth, velocity and slope) strongly influence turbulent diffusion, complete denitrification can best proceed to N2 as the dominant end-product (rather than N2O) in riparian wetlands, rather than in open stream channels where N2O fluxes are sometimes very large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • APHA (1998). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association, American Water Works Association and Water Environment Federation (1162 pp.).

  • Beckett, P. M., & Armstrong, W. (1992). The modelling of convection and diffusion-driven aeration in plants. In S. Egginton, & H. F. Ross (Eds.) Oxygen transport in biological systems, SEB Seminar Series (vol. 51, (pp. 253–293)). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Blicher-Mathiesen, G., & Hoffmann, C. C. (1999). Denitrification as a sink for dissolved nitrous oxide in a freshwater riparian fen. Journal of Environmental Quality, 28, 257–262.

    CAS  Google Scholar 

  • Brix, H. (1988). Light-dependent variations in the composition of the internal atmosphere of Phragmites australis (Cav.) Trin. ex Steudel. Aquatic Botany, 30, 319–329.

    Article  CAS  Google Scholar 

  • Champion, P. D., & Tanner, C. C. (2000). Seasonality of macrophytes and interaction with flow in a New Zealand lowland stream. Hydrobiologia, 44, 1–12.

    Article  Google Scholar 

  • Chanton, J. P., Martens, C. S., & Kelley, C. A. (1989). Gas transport from methane-saturated, tidal freshwater and wetland sediments. Limnology and Oceanography, 34, 807–819.

    Article  CAS  Google Scholar 

  • Cho, C. M., Burton, D. L., & Chang, C. (1997). Denitrification and fluxes of nitrogenous gases from soil under steady oxygen distribution. Canadian Journal of Soil Science, 77, 261–269.

    CAS  Google Scholar 

  • Chu, C. R., & Jirka, G. H. (2003). Wind and stream flow induced reaeration. Journal of Environmental Engineering, 129, 1129–1136.

    Article  CAS  Google Scholar 

  • Clough, T. J., Bertram, J. E., Sherlock, R. R., Leonard, R. L., & Nowicki, B. L. (2006). Comparison of measured and EF5-r derived N2O fluxes from a spring-fed river. Global Change Biology, 12, 352–363.

    Article  Google Scholar 

  • Cole, J. J., & Caraco, N. F. (2001). Emissions of nitrous oxide (N2O) from a tidal, freshwater river, the Hudson River, New York. Environmental Science & Technology, 35, 991–996.

    Article  CAS  Google Scholar 

  • de Klein, C. A. M., & Ledgard, S. F. (2005). Nitrous oxide emissions from New Zealand agriculture—Key sources and mitigation strategies. Nutrient Cycling in Agroecosystems, 72, 77–85.

    Article  CAS  Google Scholar 

  • de Klein, C. A. M., Sherlock, R. R., Cameron, K. C., & van der Weerden, T. J. (2001). Nitrous oxide emissions from agricultural soils in New Zealand—A review of current knowledge and directions for future research. Journal of the Royal Society of New Zealand, 31, 543–574.

    Article  Google Scholar 

  • Dendooven, L., Splatt, P., Pemberton, E., Ellis, S., & Anderson, J. M. (1997). Controls over denitrification and its gaseous products in a permanent pasture soil. In S. C. Jarvis, & B. F. Pain (Eds.) Gaseous nitrogen emissions from-grasslands (pp. 19–25). Wallingford, UK: CABI.

    Google Scholar 

  • de Wilde, H. P. J., & Duyzer, J. (1995). Methane emissions off the Dutch coast: Air–sea concentration differences versus atmospheric gradients. In B. Jähne, & E. C. Monahan (Eds.) Air–water gas transfer (pp. 763–773). Hanau: AEON Verlag & Studio.

    Google Scholar 

  • Di, H. J., & Cameron, K. C. (2002). The use of a nitrification inhibitor, dicyandiamide (DCD), to decrease nitrate leaching and nitrous oxide emissions in a simulated grazed and irrigated grassland. Soil Use and Management, 18, 395–403.

    Article  Google Scholar 

  • Di, H. J., & Cameron, K. C. (2003). Mitigation of nitrous oxide emissions in spray-irrigated grazed grassland by treating the soil with dicyandiamide, a nitrification inhibitor. Soil Use and Management, 19, 284–290.

    Article  Google Scholar 

  • Findlay, S., Quinn, J. M., Hickey, C. W., Burrell, G., & Downes, M. (2001). Effect of land use and riparian flowpath on delivery of dissolved organic carbon to streams. Limnology and Oceanography, 46, 345–355.

    CAS  Google Scholar 

  • Firestone, M. K., & Davidson, E. A. (1989). Microbiological basis of NO and N2O production and consumption in soil. In M. O. Andreae, & D. S. Schimel (Eds.) Exchange of the trace gases between terrestrial ecosystems and the atmosphere. Report for the Dahlem Workshop on exchange of gases between terrestrial ecosystems and the atmosphere (pp. 7–72). Berlin: Wiley.

    Google Scholar 

  • Ford, P. W., Boon, P. I., & Lee, K. (2002). Methane and oxygen dynamics in a shallow floodplain lake: The significance of periodic stratification. Hydrobiologia, 485, 97–110.

    Article  CAS  Google Scholar 

  • Fortescue, G. E., & Pearson, J. R. A. (1967). On gas absorption into a turbulent liquid. Chemical Engineering Science, 22, 1163–1175.

    Article  CAS  Google Scholar 

  • Frye, J. P., Mills, A. L., & Odum, W. E. (1994). Methane flux in Peltandra virginica (Araceae) wetlands: Comparison of field data with a mathematical model. American Journal of Botany, 81, 407–413.

    Article  Google Scholar 

  • Groffman, P. M., Gold, A. J., & Addy, K. (2000). Nitrous oxide production in riparian zones and its importance to national emission inventories. Chemosphere, 2, 291–299.

    CAS  Google Scholar 

  • Groffman, P. M., Gold, A. J., Kellogg, D. Q., & Addy, K. (2002). (159–166). Mechanisms, rates and assessment of N2O in groundwater, riparian zones and rivers. In J. van Ham, A. P. M. Baede, R. Guicherit, & J. G. F. M. Williams-Jacobse (Eds.) Proceedings of the third international symposium on non-CO 2 greenhouse gases. The Netherlands: Maastricht.

    Google Scholar 

  • Happell, J. D., Chanton, J. P., & Showers, W. J. (1995). Methane transfer across the water–air interface in stagnant wooded swamps of Florida: Evaluation of mass-transfer coefficients and isotopic fractionation. Limnology and Oceanography, 40, 290–298.

    CAS  Google Scholar 

  • Heilman, M. A., & Carlton, R. G. (2001a). Methane oxidation associated with submersed vascular macrophytes and its impact on plant diffusive methane flux. Biogeochemistry, 52, 207–224.

    Article  Google Scholar 

  • Heilman, M. A., & Carlton, R. G. (2001b). Ebullitive release of lacunar gases from floral spikes of Potamogeton angustifolius and Potamogeton amplifolius: Effects on plant aeration and sediment CH4 flux. Aquatic Botany, 71, 19–33.

    Article  CAS  Google Scholar 

  • Himmelblau, D. M. (1964). Diffusion of dissolved gases in liquids. Chemical Reviews, 64, 527–550.

    Article  CAS  Google Scholar 

  • Hlaváčová, E., Rulík, M., Čáp, L., & Mach, V. (2006). Greenhouse gas (CO2, CH4, and N2O) emissions to the atmosphere from a small lowland stream in Czech Republic. Archiv für Hydrobiologie, 165, 339–353.

    Article  CAS  Google Scholar 

  • Hope, D., Palmer, S. M., Billett, M. F., & Dawson, J. J. C. (2001). Carbon dioxide and methane evasion from a temperate peatland stream. Limnology and Oceanography, 46, 847–857.

    CAS  Google Scholar 

  • Houghton, J. T., Meira Filho, L. G., Lim, B., Tréanton, K., Mamaty I., Bonduki, Y., et al. (Eds.) (1997). Revised 1996 IPCC guidelines for national greenhouse gas inventories. Intergovernmental Panel on Climate Change, Organisation for Economic Cooperation and Development, Paris.

  • Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., et al. (Eds.) (2001). Climate change 2001: The scientific basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge: Cambridge University Press.

  • Husin, Y. A., Murdiyarso, D., Khalil, M. A. K., Rasmussen, R. A., Shearer, M. J., & Sabiham, S., et al. (1995). Methane flux from Indonesian wetland rice: The effects of water management and rice variety. Chemosphere, 31, 3153–31.

    Article  CAS  Google Scholar 

  • IPCC (1997). Guidelines for national greenhouse gas inventories. Paris: Intergovernmental Panel on Climate Change/Organisation for economic Cooperation and Development.

  • Jähne, B., Münnich, K. O., Bössinger, R., Dutzi, A., Huber, W., & Libner, P. (1987). On the parameters influencing air–water gas exchange. Journal of Geophysical Research, 92, 1937–1949.

    Google Scholar 

  • Jain, A. K., Briegleb, B. P., Minschwaner, K., & Wuebbles, D. J. (2000). Radiative forcings and global warming potentials of 39 greenhouse gases. Journal of Geophysical research, 105, 773–20.

    Article  Google Scholar 

  • Keller, M., & Stallard, R. F. (1994). Methane emission by bubbling from Gatun Lake, Panama. Journal of Geophysical Research, 99, 8307–8319.

    Article  CAS  Google Scholar 

  • Lashof, D. A., & Ahuja, D. R. (1990). Relative contributions of greenhouse gas emissions to global warming. Nature, 334, 529–531.

    Article  Google Scholar 

  • Lassey, K. R., Ulyatt, M. J., Martin, R. J., Walker, C. F., & Shelton, I. D. (1997). Methane emissions measured directly from grazing livestock in New Zealand. Atmospheric Environment, 31, 2905–2914.

    Article  CAS  Google Scholar 

  • Liss, P. S., & Slater, P. G. (1974). Flux of gases across the air–sea interface. Nature, 147, 181–184.

    Article  Google Scholar 

  • MAF (2006). Sheep and beef monitoring report. The Ministry of Agriculture and Forestry, Wellington, New Zealand (http://www.maf.govt.nz/).

  • Melching, C. S., & Flores, H. E. (1997). Reaeration equations derived from U.S. Geological Survey database. Journal of Environmental Engineering, 125, 407–414.

    Article  Google Scholar 

  • MfE (2007). New Zealand’s greenhouse gas inventory 1990–2005 p. 158. Wellington, New Zealand: Ministry for the Environment.

    Google Scholar 

  • NCASI (1985). A compilation of surface water quality modelling formulations, rate constants and kinetic coefficients. Technical bulletin 473 p. 230. New York, NY: National Council of the Paper industry for Air and Stream Improvement.

    Google Scholar 

  • Nykänen, H., Alm, J., Silvola, J., Tolonen, K., & Martikainen, P. J. (1998). Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochemical Cycles, 12, 53–69.

    Article  Google Scholar 

  • O'Connor, D. J., & Dobbins, W. E. (1958). Mechanism of reaeration in natural streams. Transactions of the American Society of Civil Engineers, 123, 641–684.

    Google Scholar 

  • Powlson, D. S., Goulding, K. W. T., Willison, T. W., Webster, C. P., & Hütch, B. W. (1997). The effect of agriculture on methane oxidation in soil. Nutrient Cycling in Agroecosystems, 49, 59–70.

    Article  CAS  Google Scholar 

  • Prather, M., Derwent, R., Ehhalt, D., Fraser, P., Sanhueza, E., & Zhou, X. (1995). Other gases and atmospheric chemistry. In J. T. Houghton, L. G. Meira Filho, J. Bruce, H. Lee, B. A. Callander, & E. Haites, et al. (Eds.) Climate Change 1994. Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios (pp. 73–126). Cambridge: Cambridge University Press.

    Google Scholar 

  • Priscu, J. C., Downes, M. T., & McKay, C. P. (1996). Extreme supersaturaion of nitrous oxide in a poorly ventilated Antarctic lake. Limnology and Oceanography, 41, 1544–1551.

    CAS  Google Scholar 

  • Reay, D. S., Smith, K. A., & Edwards, A. C. (2003). Nitrous oxide emission from agricultural drainage waters. Global Change Biology, 9, 195–203.

    Article  Google Scholar 

  • Sanders, I. A., Heppell, C. M., Cotton, J. A., Wharton, G., Hildrew, A. G., & Flowers, E. J., et al. (2007). Emission of methane from chalk streams has potential implications for agricultural practices. Freshwater Biology, 52, 1176–1186.

    Article  CAS  Google Scholar 

  • Schipper, L. A., & -Vukovic, M. (1998). Nitrate removal from ground water using denitrification wall amended with sawdust: Field trials. Journal of Environmental Quality, 27, 664–668.

    CAS  Google Scholar 

  • Seitzinger, S. P., & Kroeze, C. (1998). Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Global Biogeochemical Cycles, 12, 93–113.

    Article  CAS  Google Scholar 

  • Segers, R. (1998). Methane production and methane consumption: A review of processes underlying wetland methane fluxes. Biogeochemistry, 41, 23–51.

    Article  CAS  Google Scholar 

  • Snelder, T. H., & Biggs, B. J. F. (2002). Multi-scale river environment classification for water resources management. Journal of the American Water Resources Association, 38, 1225–1240.

    Article  Google Scholar 

  • Sorrell, B. K., & Boon, P. I. (1992). Biogeochemistry of billabong sediments. II. Seasonal variations in methane production. Freshwater Biology, 27, 435–445.

    Article  CAS  Google Scholar 

  • Sorrell, B. K., & Boon, P. I. (1994). Convective gas flow in Eleocharis sphacelata R. Br.: Methane transport and release from wetlands. Aquatic botany, 47, 197–212.

    Article  CAS  Google Scholar 

  • Sorrell, B. K., & Downes, M. T. (2004). Water velocity and irradiance effects on internal transport and metabolism of methane in submerged Isoetes alpinus and Potamogeton crispus. Aquatic Botany, 79, 189–202.

    Article  CAS  Google Scholar 

  • Sorrell, B. K., Downes, M. T., & Stanger, C. L. (2002). Methanotrophic bacteria and their activity on submerged aquatic macrophytes. Aquatic Botany, 72, 107–119.

    Article  Google Scholar 

  • Swerts, M., Merckx, R., & Vlassak, K. (1997). Denitrification, N2, fixation and fermentation during anaerobic incubation of soils amended with glucose and nitrate. Biology and Fertility of Soils, 23, 229–235.

    Article  Google Scholar 

  • Wanninkhof, R., Ledwell, J., & Crusius, J. (1990). (441–458). Gas transfer velocities on lakes measured with sulfur hexafluoride. In S. C. Wilhelms, J. , & S. Gulliver (Eds.) Air–water mass transfer: Selected papers from the second international symposium on gas transfer at water surfaces. New York: ASCE.

    Google Scholar 

  • Well, R., Augustin, J., Davis, J., Griffith, S. M., Meyer, K., & Myrold, D. D. (2001). Production and transport of denitrification gases in shallow ground water. Nutrient Cycling in Agroecosystems, 60, 65–75.

    Article  CAS  Google Scholar 

  • Whiting, G. J., & Chanton, J. P. (1993). Primary production control of methane emission from wetlands. Nature, 364, 794–795.

    Article  CAS  Google Scholar 

  • Wilcock, R. J. (1984). (413–420). Reaeration studies on some New Zealand rivers using methyl chloride as a gas tracer. In W. Brutsaert & G. H. Jirka (Eds.) Gas transfer at water Surfaces. Dordrecht: Reidel

    Google Scholar 

  • Wilcock, R. J., & Croker, G. F. (2004). Distribution of carbon between sediment and water in macrophyte dominated lowland streams. Hydrobiologia, 520, 143–152.

    Article  CAS  Google Scholar 

  • Wilcock, R. J., & Nagels, J. W. (2001). Effects of aquatic macrophytes on physico-chemical conditions of three contrasting lowland streams: A consequence of diffuse pollution from agriculture? Water Science and Technology, 43, 163–168.

    CAS  Google Scholar 

  • Wilcock, R. J., McBride, G. B., Nagels, J. W., & Northcott, G. L. (1995). Water quality in a polluted lowland stream with chronically depressed dissolved oxygen: causes and effects. New Zealand Journal of Marine and Freshwater Research, 29, 277–289.

    Article  CAS  Google Scholar 

  • Wilcock, R. J., Nagels, J. W., Rodda, H. J. E., O’Connor, M. B., Thorrold, B. S., & Barnett, J. W. (1999a). Water quality of a lowland stream in a New Zealand dairy farming catchment. New Zealand Journal of Marine and Freshwater Research, 33, 683–696.

    CAS  Google Scholar 

  • Wilcock, R. J., Champion, P. D., Nagels, J. W., & Croker, G. F. (1999b). The influence of aquatic macrophytes on the hydraulic and physico-chemical properties of a New Zealand lowland stream. Hydrobiologia, 416, 203–214.

    Article  CAS  Google Scholar 

  • Wilcock, R. J., Monaghan, R. M., Quinn, J. M., Campbell, A. M., Duncan, M. J., & McGowan, A. W., et al. (2006). Land use impacts and water quality targets in the intensive dairying catchment of the Toenepi Stream, New Zealand. New Zealand Journal of Marine and Freshwater Research, 40, 123–140.

    CAS  Google Scholar 

  • Wilhelms, S. C., & Gulliver, J. S. (Eds.) (1991). Air–water mass transfer. Selected papers from the second international symposium on gas transfer at water surfaces, Minneapolis, 1990. New York: American Society of Civil Engineers.

  • Wilson, J. O., Crill, P. M., Bartlett, K. B., Sebacher, D. I., Harriss, R. C., & Sass, R. L. (1989). Seasonal variation of methane emissions from a temperate swamp. Biogeochemistry, 8, 55–71.

    Google Scholar 

  • Wise, D. L., & Houghton, G. (1966). The diffusion coefficients of ten slightly soluble gases in water at 10–60°C. Chemical Engineering Science, 21, 999–1010.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Catherine Chagué-Goff for assistance with gas chromatography, and Glenis Croker, Kerry Costley and John Nagels for field assistance. Art Gold has been most helpful advising us about N2O:N2 ratios and we thank him for that. Suggestions made by two anonymous reviewers have greatly improved the paper. The study was funded by the New Zealand Foundation for Research, Science and Technology (Contract C01X0305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Wilcock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilcock, R.J., Sorrell, B.K. Emissions of Greenhouse Gases CH4 and N2O from Low-gradient Streams in Agriculturally Developed Catchments. Water Air Soil Pollut 188, 155–170 (2008). https://doi.org/10.1007/s11270-007-9532-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9532-8

Keywords

Navigation