Skip to main content
Log in

Hexavalent Chromium Removal by a Trichoderma inhamatum Fungal Strain Isolated from Tannery Effluent

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

A fungal strain possibly capable of removing hexavalent chromium was to be isolated from industrial effluent from a leather factory located in the city of Guadalajara, state of Jalisco, Mexico. The strain was identified as Trichoderma inhamatum by the D1/D2 domain sequence of the 28S rDNA gene. Batch cultures of T. inhamatum in media containing initial Cr(VI) concentrations from 0.83 to 2.43 mM Cr(VI) were prepared. Experimental results suggest that the fungus is capable of transforming hexavalent chromium to trivalent chromium; a transformation of a highly toxic contaminant to a low toxic form. The specific and volumetric rates of Cr(VI) reduction by T. inhamatum cultures decreased as the initial Cr(VI) concentration increased. The fungus exhibited a remarkable capacity to tolerate and completely reduce Cr(VI) concentrations up to 2.43 mM. These results indicate that the T. inhamatum fungal strain may have potential applications in bioremediation of Cr(VI)-contaminated wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acevedo-Aguilar, F. J., Espino-Saldaña, A. E., León-Rodríguez, I. L., Rivera-Cano, M. E., Avila-Rodríguez, M., & Wrobel, K., et al. (2006). Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes. Canadian Journal of Microbiology, 52, 809–815.

    Article  CAS  Google Scholar 

  • Arica, M. Y., & Bayramoğlu, G. (2005). Cr(VI) biosorption from aqueous solutions using free and immobilized biomass of Lentinus sajor-caju: Preparation and kinetic characterization. Colloids and Surfaces A: Physicochemical Engineering Aspects, 253, 203–211.

    Article  CAS  Google Scholar 

  • Atkinson, B., & Mavituna, F. (1983). Biochemical engineering and biotechnology handbook. United Kingdom: Nature Press.

    Google Scholar 

  • Badar, U., Ahmed, N., Beswick, A. J., Pattanapipitpaisal, P., & Macaskie, L. E. (2000). Reduction of chromate by microorganisms isolated from metal contaminated sites of Karachi, Pakistan. Biotechnology Letters, 22, 829–836.

    Article  CAS  Google Scholar 

  • Bae, W. C., Kang, T. G., Kang, I. K., Won, Y. J., & Jeong, B. C. (2000). Reduction of hexavalent chromium by Escherichia coli ATCC 33456 in batch and continuous cultures. The Journal of Microbiology, 38, 36–39.

    CAS  Google Scholar 

  • Beszedits, S. (1988). Chromium removal from industrial wastewaters. In J. O. Nriagu, & E. Nieboer (Eds.) Chromium in the natural and human environments (pp. 232–263). New York: John Wiley.

    Google Scholar 

  • Bissett, J. (1991). A revision of the genus Trichoderma. II. Infrageneric classification. Canadian Journal of Botany, 69, 2357–2372.

    Google Scholar 

  • Chardin, B., Dolla, A., Chaspoul, F., Fardeau, M. L., Gallice, P., & Bruschi, M. (2002). Bioremediation of chromate: Thermodynamic analysis of the effects of Cr(VI) on sulfate-reducing bacteria. Applied Microbiology and Biotechnology, 60, 352–360.

    Article  CAS  Google Scholar 

  • Cheung, K. H., & Gu, J. D. (2003). Reduction of chromate \(\left( {{\text{CrO}}_4^{2 - } } \right)\) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria. Chemosphere, 52, 1523–1529.

    Article  CAS  Google Scholar 

  • Chirwa, E. N., & Wang, Y. T. (1997). Hexavalent chromium reduction by Bacillus sp. in a packed-bed bioreactor. Environmental Science and Technology, 31, 1446–1451.

    Article  CAS  Google Scholar 

  • Chirwa, E. N., & Wang, Y. T. (2000). Simultaneous chromium(VI) reduction and phenol degradation in an anaerobic consortium of bacteria. Water Research, 34, 2376–2384.

    Article  CAS  Google Scholar 

  • DeLeo, P. C., & Ehrlich, H. (1994). Reduction of hexavalent chromium by Pseudomonas fluorescens LB300 in batch and continuous cultures. Applied Microbiology and Biotechnology, 40, 756–759.

    Article  CAS  Google Scholar 

  • Dmitrenko, G. N., Konovalova, V. V., & Shum, O. A. (2003). The reduction of Cr(VI) by bacteria of the genus Pseudomonas. Microbiology, 72, 327–330.

    Article  CAS  Google Scholar 

  • Francisco, R., Alpoim, M. C., & Morais, P. V. (2002). Diversity in chromium-resistant and reducing bacteria in a chromium-contaminated activated sludge. Journal of Applied Microbiology, 92, 837–843.

    Article  CAS  Google Scholar 

  • Fredrickson, J. K., Kostandarithes, H. M., Li, S. W., Plymale, A. E., & Daly, M. J. (2000). Reduction of Fe(III), Cr(VI), U(VI) and Tc(VII) by Deinococcus radiodurans R1. Applied and Environmental Microbiology, 66, 2006–2011.

    Article  CAS  Google Scholar 

  • Fujie, K., Ying, H. H., Xia, H., Tanaka, Y., Urano, K., & Ohtake, H. (1996). Optimal operation of bioreactor developed for the treatment of chromate wastewater using Enterobacter cloacae HO-1. Water Science and Technology, 34, 173–182.

    Article  CAS  Google Scholar 

  • Ganguli, A., & Tripathi, A. K. (1999). Survival and chromate reducing ability of Pseudomonas aeruginosa in industrial effluents. Letters in Applied Microbiology, 28, 76–80.

    Article  CAS  Google Scholar 

  • Ganguli, A., & Tripathi, A. K. (2002). Bioremediation of toxic chromium from electroplating effluent by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Applied Microbiology and Biotechnology, 58, 416–420.

    Article  CAS  Google Scholar 

  • Garbisu, C., Alkorta, I., Llama, M. J., & Serra, J. L. (1998). Aerobic chromate reduction by Bacillus subtilis. Biodegradation, 9, 133–141.

    Article  CAS  Google Scholar 

  • Gouda, M. K. (2000). Studies on chromate reduction by three Aspergillus species. Fresenius Environmental Bulletin, 9, 799–808.

    CAS  Google Scholar 

  • Guha, H., Jayachandran, K., & Maurrasse, F. (2003). Microbiological reduction of chromium (VI) in presence of pyrolusite-coated sand by Shewanella alga Simidu ATCC 55627 in laboratory column experiments. Chemosphere, 52, 175–183.

    Article  CAS  Google Scholar 

  • Hach Company (2002). Hach Water Analysis Handbook. Loveland, CO.

  • Hermosa, M. R., Grondona, I., Iturriaga, E. A., Días-Minguez, J. M., Castro, C., & Monte, E., et al. (2000). Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Applied and Environmental Microbiology, 66, 1890–1898.

    Article  CAS  Google Scholar 

  • Humphries, A. C., & Macaskie, L. E. (2002). Reduction of Cr(VI) by Desulfovibrio vulgaris and Microbacterium sp. Biotechnology Letters, 24, 1261–1267.

    Article  CAS  Google Scholar 

  • Juvera-Espinosa, J., Morales-Barrera, L., & Cristiani-Urbina, E. (2006). Isolation and characterization of a yeast strain capable of removing Cr(VI). Enzyme and Microbial Technology, 40, 114–121.

    Article  CAS  Google Scholar 

  • Konovalova, V. V., Dmytrenko, G. M., Nigmatullin, R. R., Bryk, M. T., & Gvozdyak, P. I. (2003). Chromium(VI) reduction in a membrane bioreactor with immobilized Pseudomonas cells. Enzyme and Microbial Technology, 33, 899–907.

    Article  CAS  Google Scholar 

  • Ksheminska, H., Fedorovych, D., Babyak, L., Yanovych, D., Kaszycki, P., & Holoczek, H. (2005). Chromium(III) and (VI) tolerance and bioaccumulation in yeast: A survey of cellular chromium content in selected strains of representative genera. Process Biochemistry, 40, 1565–1572.

    Article  CAS  Google Scholar 

  • Laxman, R. S., & More, S. (2002). Reduction of hexavalent chromium by Streptomyces griseus. Minerals Engineering, 15, 831–837.

    Article  CAS  Google Scholar 

  • Lofroth, G., & Ames, B. N. (1978). Mutagenicity of inorganic compounds in Salmonella typhimurium: Arsenic, chromium and selenium. Mutation Research, 53, 65–66.

    Google Scholar 

  • Marsh, T. L., & McInerney, M. J. (2001). Relationship of hydrogen bioavailability to chromate reduction in aquifer sediments. Applied and Environmental Microbiology, 67, 1517–1521.

    Article  CAS  Google Scholar 

  • McLean, J., & Beveridge, T. J. (2001). Chromate reduction by a Pseudomonad isolated from a site contaminated with chromate copper arsenate. Applied and Environmental Microbiology, 67, 1076–1084.

    Article  CAS  Google Scholar 

  • Mergeay, M. (1995). Heavy metal resistances in microbial ecosystems. In A.D. L. Akkermans, J. D. van Elsas, & F. J. De Bruijn (Eds.) Molecular microbial ecology manual (pp. 1–17). Dordrecht: Kluwer Academic Press.

    Google Scholar 

  • Middleton, S. S., Latmani, R. B., Mackey, M. R., Ellisman, M. H., Tebo, B. M., & Criddle, C. S. (2003). Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnology and Bioengineering, 83, 627–637.

    Article  CAS  Google Scholar 

  • Pal, N. (1997). Reduction of hexavalent chromium to trivalent chromium by Phanerochaete chrysosporium. In B. C. Alleman, & A. Leeson (Eds.) In situ and on-site bioremediation, Vol. 1 (pp. 511–517). Ohio: Batelle Press.

    Google Scholar 

  • Park, D., Yun, Y. S., Cho, H. Y., & Park, J. M. (2004). Chromium biosorption by thermally treated biomass of the brown seaweed, Ecklonia sp. Industrial and Engineering Chemistry Research, 43, 8226–8232.

    Article  CAS  Google Scholar 

  • Pattanapipitpaisal, P., Brown, N. L., & Macaskie, L. E. (2001a). Chromate reduction and 16S rRNA identification of bacteria isolated from Cr(VI)-contaminated site. Applied Microbiology and Biotechnology, 57, 257–261.

    Article  CAS  Google Scholar 

  • Pattanapipitpaisal, P., Brown, N. L., & Macaskie, L. E. (2001b). Chromate reduction by Microbacterium liquefaciens immobilized in polyvinyl alcohol. Biotechnology Letters, 23, 61–65.

    Article  CAS  Google Scholar 

  • QuiIntana, M., Curutchet, G., & Donati, E. (2001). Factors affecting chromium (VI) reduction by Thiobacillus ferrooxidans. Biochemical Engineering Journal, 9, 11–15.

    Article  CAS  Google Scholar 

  • Ramírez-Ramírez, R., Calvo-Méndez, C., Ávila-Rodríguez, M., Lappe, P., Ulloa, M., & Vázquez-Juárez, R., et al. (2004). Cr(VI) reduction in a chromate-resistant strain of Candida maltosa isolated from the leather industry. Antonie van Leeuwenhoek, 85, 63–68.

    Article  Google Scholar 

  • Şahin, Y., & Öztürk, A. (2005). Biosorption of chromium (VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochemistry, 40, 1895–1901.

    Article  Google Scholar 

  • Sani, R. K., Peyton, B. M., Smith, W. A., Apel, W. A., & Petersen, J. N. (2002). Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates. Applied Microbiology and Biotechnology, 60, 192–199.

    Article  CAS  Google Scholar 

  • Shakoori, A. R., Makhdoom, M., & Haq, R. U. (2000). Hexavalent chromium reduction by a dichromate-resistant gram positive bacterium isolated from effluents of tanneries. Applied Microbiology and Biotechnology, 53, 348–351.

    Article  CAS  Google Scholar 

  • Shen, H., & Wang, Y. T. (1993). Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Applied and Environmental Microbiology, 59, 3771–3777.

    CAS  Google Scholar 

  • Shen, H., & Wang, Y. T. (1994). Biological reduction of chromium by E. coli. Journal of Environmental Engineering, 120, 560–572.

    Article  CAS  Google Scholar 

  • Smith, W. A., Apel, W. A., Petersen, J. N., & Peyton, B. M. (2002). Effect of carbon and energy source on bacterial chromate reduction. Bioremediation Journal, 6, 205–215.

    Article  CAS  Google Scholar 

  • Stasinakis, A. S., Thomaidis, N. S., Mamais, D., Karivali, M., & Lekkas, T. D. (2003). Chromium species behaviour in the activated sludge process. Chemosphere, 52, 1059–1067.

    CAS  Google Scholar 

  • Stasinakis, A. S., Thomaidis, N. S., Mamais, D., & Lekkas, T. D. (2004). Investigation of Cr(VI) reduction in continuous-flow activated sludge systems. Chemosphere, 57, 1069–1077.

    Article  CAS  Google Scholar 

  • Sugita, T., Takashima, M., Ikeda, R., Nakase, T., & Shinoda, T. (2000). Intraspecies diversity of Cryptococcus laurentii as revealed by sequences of internal transcribed spacer regions and 28S rDNA. Gene and taxonomic position of C. laurentii clinical isolates. Journal of Clinical Microbiology, 38, 1468–1471.

    CAS  Google Scholar 

  • Sumathi, K. M. S., Mahimairaja, S., & Naidu, R. (2005). Use of low-cost biological wastes and vermiculite for removal of chromium from tannery effluent. Bioresource Technology, 96, 309–316.

    Article  CAS  Google Scholar 

  • Tucker, M. D., Barton, L. L., & Thomson, B. M. (1998). Reduction of Cr, Mo, Se, and U by Desulfovibrio desulfuricans immobilized in polyacrylamide gels. Journal of Industrial Microbiology and Biotechnology, 20, 13–19.

    Article  CAS  Google Scholar 

  • Viamajala, S., Peyton, B. M., Apel, W. A., & Petersen, J. N. (2002). Chromate reduction in Shewanella oneidensis MR-1 is an inducible process associated with anaerobic growth. Biotechnology Progress, 18, 290–295.

    Article  CAS  Google Scholar 

  • Viamajala, S., Peyton, B. M., Sani, R. K., Apel, W. A., & Petersen, J. N. (2004). Toxic effects of chromium (VI) on anaerobic and aerobic growth of Shewanella oneidensis MR-1. Biotechnology Progress, 20, 87–95.

    Article  CAS  Google Scholar 

  • Volesky, B. (2003). Sorption and biosorption. Montreal-St. Lambert, Quebec, Canada: BV Sorbex, Inc..

    Google Scholar 

  • Wang, P. C., Mori, T., Komori, K., Sasatsu, M., Toda, K., & Ohtake, H. (1989). Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Applied and Environmental Microbiology, 55, 1665–1669.

    CAS  Google Scholar 

  • Wang, Y. (2000). Microbial reduction of chromate. In D. R. Lovley (Ed.) Environmental microbe – Metal interactions (pp. 225–235). Washington: American Society for Microbiology Press.

    Google Scholar 

  • Wang, Y. T., & Shen, H. (1997). Modelling Cr(VI) reduction by pure bacterial cultures. Water Research, 31, 727–732.

    Article  CAS  Google Scholar 

  • Wang, Y., & Xiao, C. (1995). Factors affecting hexavalent chromium reduction in pure cultures of bacteria. Water Research, 29, 2467–2474.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

E. C.-U. is a fellow holder of a grant from the Comisión de Operación y Fomento de Actividades Académicas, Instituto Politécnico Nacional, Mexico City, Mexico. The authors gratefully acknowledge the financial support provided by the Secretaría de Investigación y Posgrado, IPN. The CONACyT awarded a graduate scholarship to one of the authors (L. M.-B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliseo Cristiani-Urbina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales-Barrera, L., Cristiani-Urbina, E. Hexavalent Chromium Removal by a Trichoderma inhamatum Fungal Strain Isolated from Tannery Effluent. Water Air Soil Pollut 187, 327–336 (2008). https://doi.org/10.1007/s11270-007-9520-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9520-z

Keywords

Navigation