Oxidative Stress, the Paradigm of Ozone Toxicity in Plants and Animals

Abstract

Tropospheric ozone represents a relevant atmospheric pollutant, because of its strong oxidizing potential. The risk for animal (human) and plant health, at molecular and cellular level, arises from the oxidative damage to lipids, proteins and nucleic acids, depending on the dose. Therefore, ozone concentration and exposure time determine the chronic or acute toxicity and, consequently, the severity of injury at biochemical and physiological level. In living organisms, reactive oxygen species (ROS), directly or indirectly derived from ozone exposure, are scavenged by enzymatic and non-enzymatic antioxidant defensive mechanisms, overall deputed to preserve cell structures and biomacromolecules from the oxidative damage. These defences are essentially those also involved in detoxifying the ROS inevitably produced by the metabolism of organisms living in oxygenic atmosphere.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Alscher, R. G. (1989). Biosynthesis and antioxidant function of glutathione in plants. Physiologia Plantarum, 93, 196–205.

    Google Scholar 

  2. Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress and signal transduction. Annual Reviews of Plant biology, 55, 373–399.

    CAS  Google Scholar 

  3. Aris, R. M., Christian, D., Hearne, P. Q., Finkbeiner, W. E., & Balmes, J. R. (1993). Ozone-induced airway inflammation in human subjects as determined by airway lavage and biopsy. American Reviews of Respiratory Diseases, 148, 1363–1372.

    CAS  Google Scholar 

  4. Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141, 391–396.

    CAS  Google Scholar 

  5. Balmes, J. R., Chen, L. L., Scannell, C., Tager, I., Christian, D., & Hearne, P. Q., et al. (1996). Ozone-induced decrements in FEV1 and FVC do not correlate with measures of inflammation. American Journal of Respiratory Critical Care and Medicine, 153, 904–909.

    CAS  Google Scholar 

  6. Baumbach, G., & Vogt, U. (2003). Influence of inversion layers on the distribution of air pollutants in urban areas. Water, Air and Soil Pollution: Focus, 3, 67–87.

    Google Scholar 

  7. Barr, B. C., Hyde, D. M., Plopper, C. G., & Dungworth, C. L. (1988). Distal airway remodelling in rats chronically exposed to ozone. American Reviews of Respiratory Diseases, 137, 924–938.

    CAS  Google Scholar 

  8. Bayram, H., Sapsford, R. J., Abdelaziz, M. M., & Khair, O. A. (2001). Effect of ozone and nitrogen dioxide on the release of proinflammatory mediators from bronchial epithelial cell of non-atopic non-asthmatic subjects and atopic asthmatic patients in vivo. Journal of Allergy and Clinical Immunology, 107, 287–294.

    CAS  Google Scholar 

  9. Bergmann, E., Bender, J., & Weigel, J. (1999). Ozone threshold doses and exposure–response relationships for the development of ozone injury symptoms in wild plant species. New Phytologist, 144, 423–435.

    CAS  Google Scholar 

  10. Black, V. J., Black, C. R., Roberts, J. A., & Stewart, C. A. (2000). Impact of ozone on the reproductive development of plants. New Phytologist, 147, 421–447.

    CAS  Google Scholar 

  11. Blatt, M. R. (2000). Cellular signaling and volume control in stomatal movements in plants. Annual Reviews of Cell and Development Biology, 16, 221–241.

    CAS  Google Scholar 

  12. Blundell, R. (2006). The biology of small airway epithelium. International Journal of Molecular Medicine and Advanced Science, 2, 354–359.

    Google Scholar 

  13. Boorman, G. A., Schwartz, L. W., & Dungworth, C. L. (1980). Pulmonary effects of prolonged ozone insult in rats: Morphometric analysis of central acinus. Laboratory Investigation, 43, 108–115.

    CAS  Google Scholar 

  14. Borrell, A., Carbonell, L., Farràs, R., Puig-Parellada, P., & Tiburcio, A. F. (1997). Polyamines inhibit lipid peroxidation in senescing oat leaves. Physiologia Plantarum, 99, 385–390.

    CAS  Google Scholar 

  15. Bors, W., Langebartels, C., Michel, C., & Sandermann, H. (1989). Polyamines as radical scavengers and protectans against ozone damage. Phytochemistry, 28, 1589–1595.

    CAS  Google Scholar 

  16. Bosson, J., Stenfors, N., Bucht, A., Helleday, R., Pourazar, J., & Holgate, S. T., et al. (2003). Ozone-induced bronchial epithelial cytochine expression differs between health and asthmatic subjects. Clinical and Experimental Allergy, 33, 777–782.

    CAS  Google Scholar 

  17. Bouchereau, A., Aziz, A., Larher, F., & Martin-Tanguy, J. (1999). Polyamines and environmental challenges: Recent development. Plant Science, 140, 103–125.

    CAS  Google Scholar 

  18. Bowler, C., Van Camp, W., Van Montagu, M., & Inzé, D. (1994). Superoxide dismutase in plants. Critical Reviews in Plant Science, 13, 199–218.

    CAS  Google Scholar 

  19. Bromberg, P. A., & Koren, H. S. (1995). Ozone-induced human respiratory dysfunction and disease. Toxicology Letters, 82/83, 307–316.

    CAS  Google Scholar 

  20. Bruce, N. A., Catchart, R., Schwiers, E., & Hochstein, P. (1981). Uric acid provides an antioxidant defense in human against oxidant- and radical-caused aging and cancer: A hypothesis. Proceedings of the National Academy of Sciences of United States of America, 78, 6858–6862.

    Google Scholar 

  21. Brunekreef, B. (1997). Air pollution and life expectancy: Is there a relation? Occupational and Environmental Medicine, 54, 781–784.

    CAS  Article  Google Scholar 

  22. Carrasco-Rodriguez, J. L., Asensi-Fabado, A., & Del Valle-Tascon, S. (2005). Effects of tropospheric ozone on potato plants protected by the antioxidant diphenylamine (DPA). Water, Air, and Soil Pollution, 161, 229–312.

    Google Scholar 

  23. Cho, H. Y., Hotchkiss, J. A., & Harkema, J. R. (1999). Inflammatory and epithelial responses during the development of ozone-induced mucous cell metaplasia in the nasal epithelium of rats. Toxicological Sciences, 51, 135–145.

    CAS  Google Scholar 

  24. Christian, D. L., Chen, L. L., Scannell, C. H., Ferrando, R. E., Welch, B. S., & Balmes, J. R. (1998). Ozone-induced inflammation is attenuated with multiday exposure. American Journal of Respiratory Critical Care and Medicine, 158, 532–537.

    CAS  Google Scholar 

  25. Coleridge, J. C. G., Coleridge, H. M., Schelegle, E. S., & Green, J. F. (1993). Acute inhalation of ozone stimulates bronchial C-fibers and rapidly adapting receptors in dogs. Journal of Applied Physiology, 74, 2345–2352.

    CAS  Google Scholar 

  26. Comhair, S. A. A., & Erzurum, S. C. (2002). Antioxidant responses to oxidant mediated lung disease. American Journal of Physiology, 283, L246–L255.

    CAS  Google Scholar 

  27. Creelman, R. A., & Mullet, J. E. (1997). Biosynthesis and action of jasmonates in plants. Annual Reviews of Plant Physiology and Plant Molecular Biology, 48, 355–381.

    CAS  Google Scholar 

  28. Criegee, R. (1957). The course of ozonation of unsaturated compounds. Record of Chemical Progress, 18, 110–120.

    Google Scholar 

  29. Cross, C. E., van der Vliet, A., O’Neill, C. A., Louie, S., & Halliwell, B. (1998a). Oxidants, antioxidants and respiratory tract lining fluids. Environmental Health Perspectives, 102, 185–191.

    Google Scholar 

  30. Cross, C. E., van der Vliet, A., Louie, S., Thiele, J. J., & Halliwell, B. (1998b). Oxidative stress and antioxidants at biosurfaces: Plants, skin and respiratory tract surfaces. Environmental Health Perspectives, 106, 1241–1251.

    CAS  Google Scholar 

  31. Cross, C. E., Valacchi, G., Schock, B., Wilson, M., Weber, S., & Eiserich, J. (2002). Environmental oxidant pollutant effects on biological systems. American Journal of Respiratory Critical Care and Medicine, 166, 44–50.

    Google Scholar 

  32. Crutzen, P. J., & Lelieveld, J. (2001). Human impacts on atmospheric chemistry. Annual Review of Earth and Planetary Sciences, 29, 17–45.

    CAS  Google Scholar 

  33. Cutler, R. G. (1984). Urate and ascorbate: Their possible roles as antioxidants in determining longevity of mammalian species. Archives of Gerontology and Geriatrics, 3, 321–348.

    CAS  Google Scholar 

  34. Dahlgren, C., & Karlsson, A. (1999). Respiratory burst in human neutrophils. Journal of Immunological Methods, 232, 3–14.

    CAS  Google Scholar 

  35. Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D., & Van Breusegem, F. (2000). Dual action of active oxygen species durino plant stress responses. Cellular and Molecular Life Science, 57, 779–795.

    CAS  Google Scholar 

  36. Davies, K. J., Sevanian, A., Muakkassah-Kelly, S. F., & Hochstein, P. (1986). Uric acid–iron complexes. A new aspect of the antioxidant functions of uric acid. Biochemical Journal, 235, 747–754.

    CAS  Google Scholar 

  37. Della Penna, D., & Pogson, B. J. (2006). Vitamin synthesis in plants: Tocopherols and carotenoids. Annual Reviews in Plant Biology, 57, 711–738.

    CAS  Google Scholar 

  38. DeLorme, M. P., Yang, H., Elbon-Copp, C., Gao, X., Barraclough-Mitchell, H., & Basset, D. J. P. (2002). Hyperresponsive airways correlate with lung tissue inflammatory cell changes in ozone-exposed rats. Journal of Toxicology and Environmental Health, 65, 1453–1470.

    CAS  Google Scholar 

  39. Devlin, R. B., McDonnel, W. F., Mann, R., Becker, S., House, D. E., & Schreinemachers, D. (1991). Exposure to humans to ambient levels of ozone for 6.6 hours causes cellular and biochemical changes in the lung. American Journal of Respiratory Cell and Molecular Biology, 4, 72–81.

    CAS  Google Scholar 

  40. Devlin, R. B., McKinnon, K. P., Noah, T., Becker, S., & Koren, H. S. (1994). Ozone-induced release of cytokines and fibronectine by alveolar macrophages and airway epithelial cells. American Journal of Physiology, 266, L612–L619.

    CAS  Google Scholar 

  41. Domitrović, R. (2006). Vitamin C in disease prevention and therapy. Biochemia Medica, 16, 107–125.

    Google Scholar 

  42. Duneclift, S., Wells, U., & Widdicombe, J. (1997). Estimation of thickness of airway surface liquid in ferret trachea in vitro. American Journal of Physiology, 83, 761–767.

    CAS  Google Scholar 

  43. Dubbels, R., Reiter, R. J., Klenke, E., Goebel, A., Schnakenberg, E., & Ehlers, C. (1995). Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectroscopy. Journal of Pineal Research, 18, 28–31.

    CAS  Google Scholar 

  44. Dutsch, H. V. (1978). Vertical ozone distribution on a global scale. Pure and Applied Geophysics, 116, 511–529.

    Google Scholar 

  45. Enyedi, A. J., Eckardt, N. A., & Pell, E. J. (1992). Activity of ribulose bisphosphate carboxylase/oxygenase from potato cultivars with differential response to ozone stress. New Phytologist, 122, 493–500.

    CAS  Google Scholar 

  46. Eshdat, Y., Holland, D., Faltin, Z., & Ben-Hayyim, G. (1997). Plant glutathione peroxidases. Physiologia Plantarum, 100, 234–240.

    CAS  Google Scholar 

  47. Faoro, F., & Iriti, M. (2005). Cell death behind invisible symptoms: Early diagnosis of ozone injury. Biologia Plantarum, 49, 585–592.

    Google Scholar 

  48. Felle, H. H., Herrmann, A., Hückelhoven, R., & Kogel, K.-H. (2005). Root-to-shoot signalling: Apoplastic alkalinization, a general stress response and defence factor in barley (Hordeum vulgare). Protoplasma, 227, 17–24.

    CAS  Google Scholar 

  49. Foyer, C. H., & Halliwell, B. (1976). The presence of glutathione and glutathione in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 133, 21–25.

    Google Scholar 

  50. Foyer, C. H., & Lelandais, M. (1996). A comparison of the relative rates of transport of ascorbate and glucose across the thylakoid, chloroplast and plasmalemma membranes of pea leaf mesophyll cells. Journal of Plant Physiology, 148, 391–398.

    CAS  Google Scholar 

  51. Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell, 17, 1866–1875.

    CAS  Google Scholar 

  52. Fowler, D., Cape, J. N., Coyle, M., Smith, R. I., Hjellbrekke, A.-G., & Simpson, D. (1999). Modelling photochemical oxidant formation, transport, deposition and exposure of terrestrial ecosystems. Environmental Pollution, 100, 43–55.

    CAS  Google Scholar 

  53. Frank, R., Liu, M. C., Spannhake, E. W., Mlynarek, S., Macri, K., & Weinmann, G. G. (2001). Repetitive ozone exposure of young adults. American Journal of Respiratory Critical Care and Medicine, 164, 1253–1260.

    CAS  Google Scholar 

  54. Freeman, B. A., & Mudd, J. B. (1981). Reaction of ozone with sulfhydryls of human erythrocytes. Archives of Biochemistry and Biophysics, 208, 212–220.

    CAS  Google Scholar 

  55. Gechev, T. S., Van Breusegem, F., Stone, J. M., Denev, I., & Laloi, C. (2006). Reactive oxygen species as signals that modulate plant responses and programmed cell death. BioEssays, 28, 1091–1101.

    CAS  Google Scholar 

  56. Gilmour, M. I., Park, P., & Selgrade, M. K. (1993). Ozone-enhanced pulmonary infection with Streptococcus zooepidemicus in mice. American Reviews of Respiratory Diseases, 147, 753–760.

    CAS  Google Scholar 

  57. Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141, 312–322.

    CAS  Google Scholar 

  58. Hassan, I. A. (2006). Physiological and biochemical response of potato (Solanum tuberosum L. Cv. Kara) to O3 and antioxidant chemicals: Possible roles of antioxidant enzymes. Annals of Applied Biology, 148, 197–206.

    CAS  Google Scholar 

  59. Hazbun, M. E., Hamilton, R., Holian, A., & Eschenbacher, W. L. (1993). Ozone induced increases in substance P and 8-epi-prostaglandin F2. a. in the airways of human subjects. American Journal of Respiratory Cell and Molecular Biology, 9, 568–572.

    CAS  Google Scholar 

  60. Ho, C. Y., & Lee, L. Y. (1998). Ozone enhances excitabilities of pulmonary C fibers to chemical and mechanical stimuli in anesthetized rats. Journal of Applied Physiology, 85, 1509–1515.

    CAS  Google Scholar 

  61. Hoet, P. H. M., & Nemery, B. (2000). Polyamines in the lung: Polyamine uptake and polyamine-linked pathological or toxicological conditions. American Journal of Physiology, 278, L417–L433.

    CAS  Google Scholar 

  62. Höppe, P., Praml, G., Rabe, G., Linder, J., Fruhmann, G., & Kessel, R. (1995). Environmental ozone field study on pulmonary and subjective responses of assumed risk groups. Environmental Research, 71, 109–121.

    Google Scholar 

  63. Housley, D. G., Mudway, I., Kelly, F. J., Eccles, R., & Richards, R. J. (1995). Depletion of urate in human nasal lavage following in vitro ozone exposure. International Journal of Biochemistry and Cell Biology, 27, 1153–1159.

    CAS  Google Scholar 

  64. Hussain, M. Z., Mustafa, M. G., Ghani, Q. P., & Bhatnagar, R. S. (1985). Stimulation of poly(ADP-ribose) synthetase activity in the lungs of mice exposed to a low level of ozone. Archives of Biochemistry and Biophysics, 241, 477–485.

    CAS  Google Scholar 

  65. Hyde, D. G., Hubbard, W. C., Wong, V., Wu, R., Pinkerton, K., & Plopper, C. G. (1992). Ozone-induced acute tracheobronchial epithelial injury: Relationship to granulocyte emigration in the lung. American Journal of Respiratory Cell and Molecular Biology, 6, 481–497.

    CAS  Google Scholar 

  66. Hyde, D. G., Miller, L. A., McDonald, R. J., Stovall, M. W., Wong, V., & Pinkerton, K. (1999). Neutrophils enhance clearance of necrotic cells in ozone-induced lung injury in rhesus monkeys. America Journal of Physiology, 277, L1190–L1198.

    CAS  Google Scholar 

  67. Ignatenko, A. V., Cherenkevich, S. N., & Komyak, A. I. (1984). Chromatographic and spectroscopic investigation of the products of oxidation of tyrosine with ozone. Journal of Applied Spectroscopy, 41, 159–164.

    Google Scholar 

  68. Iriti, M., & Faoro, F. (2004). Plant defence and human nutrition: The phenylpropanoids on the menù. Current Topics in Nutraceutical Research, 2, 47–65.

    CAS  Google Scholar 

  69. Iriti, M., & Faoro, F. (2006). Grape phytochemicals: A bouquet of old and new nutraceuticals for human health. Medical Hypoteses, 67, 833–838.

    CAS  Google Scholar 

  70. Iriti, M., Rabotti, G., de Ascensao, A. R., & Faoro, F. (2003). Benzothiadiazole-induced resistance modulates ozone tolerance. Journal of Agricultural and Food Chemistry, 51, 4308–4314.

    CAS  Google Scholar 

  71. Iriti, M., Sironi, M., Gomarasca, S., Casazza, A. P., Soave, C., & Faoro, F. (2006). Cell death-mediated antiviral effect of chitosan in tabacco. Plant Physiology and Biochemistry, 44, 893–900.

    CAS  Google Scholar 

  72. Jones, D. P. (2006). Redefining oxidative stress. Antioxidants & Redox Signaling, 8, 1865–1879.

    CAS  Google Scholar 

  73. Jörres, R. A., Holz, O., Zachgo, W., Timm, P., Koschyk, S., Müller, B., & Grimminger, F. (2000). The effect of repeated ozone exposure on inflammatory markers in bronchoalveolar lavage fluid and mucosal biopsies. American Journal of Respiratory Critical Care and Medicine, 161, 1855–1861.

    Google Scholar 

  74. Kanofsky, J. R., & Simall, P. (1990). Singlet oxygen production from the reactions of ozone with biological molecules. The Journal of Biological Chemistry, 266, 9039–9042.

    Google Scholar 

  75. Kehrl, H. R., Vincent, L. M., Kowalsky, R. J., Horstman, D. H., O’Neill, J., & McCartney, W. H. (1987). Ozone exposure increases respiratory epithelial permeability in humans. American Reviews of Respiratory Diseases, 135, 1124–1128.

    CAS  Google Scholar 

  76. Kelly, F. J. (2004). Dietary antioxidant and environmental stress. Proceedings of the Nutrition Society, 63, 579–585.

    CAS  Google Scholar 

  77. Kelly, F. J., Dunster, C., & Mudway, I. (2003). Air pollution and the elderly: Oxidant/antioxidant issues worth consideration. European Respiration Journal, 21, 70s–75s.

    CAS  Google Scholar 

  78. Kelly, F. J., Mudway, I., Krishna, M. T., & Holgate, S. T. (1995). The free radical basis of air pollution: Focus on ozone. Respiratory Medicine, 89, 647–656.

    CAS  Google Scholar 

  79. Kerr, J. B., & McElroy, C. T. (1993). Evidence for large trend of ultraviolet-B radiation linked to ozone depletion. Science, 262, 1032–1034.

    CAS  Google Scholar 

  80. Kerstiens, G., & Lendzian, K. J. (1989). Interactions between ozone and plant cuticles. I. Ozone deposition and permeability. New Phytologist, 112, 13–19.

    CAS  Google Scholar 

  81. Kinnula, V. L., & Crapo, J. D. (2003). Superoxide dismutases in the lung and human lung diseases. Journal of Respiratory Critical Care and Medicine, 167, 1600–1619.

    Google Scholar 

  82. Kley, D., Kleinmann, M., Sandermann, H., & Krupa, S. (1999). Photochemical oxidants: State of the science. Environmental Pollution, 100, 19–42.

    CAS  Google Scholar 

  83. Kluchová, Z., & Tkáĉová, R. (2006). The role of oxidative stress in lung injury induced by cigarette smoke. Biologia, 61, 643–650.

    Google Scholar 

  84. Koch, J. R., Creelman, R. A., Eshita, S. M., Seskar, M., Mullet, J. E., & Davis, K. R. (2000). Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid: The role of programmed cell death in lesion formation. Plant Physiology, 123, 1–10.

    Google Scholar 

  85. Koto, H., Aizawa, H., Takata, S., Inoue, H., & Hara, N. (1995). An important role of tachykinin in ozone-induced airway hyperresponsiveness. American Journal of Respiratory Critical Care and Medicine, 151, 1763–1769.

    CAS  Google Scholar 

  86. Krishna, M. T., Springall, D., Meng, Q.-H., Withers, N., Biscione, G., & Frew, A. (1997). Effects of ozone on epithelium and sensory nerves in the bronchial mucosa of healthy humans. American Journal of Respiratory Critical Care and Medicine, 156, 943–950.

    CAS  Google Scholar 

  87. Krupa, S., McGrath, M. T., Andersen, C. P., Booker, F., Burkey, K. O., & Chappelka, A. H. (2000). Ambient ozone and plant health. Plant Disease, 85, 4–12.

    Google Scholar 

  88. Langebartels, C., Kerner, K., Leonardi, S., Schraudner, M., Trost, M., Heller, W., & Sandermann, H. (2002). Biochemical plant responses to ozone. I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiology, 95, 882–889.

    Google Scholar 

  89. Langebartels, C., Wohlgemuth, H., Kschieschan, S., Grun, S., & Sandermann, H. (1991). Oxidative burst and cell death in ozone-exposed plants. Plant Physiology and Biochemistry, 40, 567–575.

    Google Scholar 

  90. Langford, S. D., Bidani, A., & Postlethwait, E. M. (1995). Ozone-reactive absorption by pulmonary epithelial lining fluid constituents. Toxicology and Applied Pharmacology, 132, 122–130.

    CAS  Google Scholar 

  91. Law, M. Y., Charles, S. A., & Halliwell, B. (1983). Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. Biochemical Journal, 210, 899–903.

    CAS  Google Scholar 

  92. Lippman, M., & Schlesinger, R. B. (2000). Toxicological bases for the setting of health-related air pollution standards. Annual Reviews of Public Health, 21, 309–333.

    Google Scholar 

  93. Logan, J. A. (1985). Tropospheric ozone: Seasonal behaviour, trends and anthropogenic influences. Journal of Geophysical Research, 90, 10463–10482.

    Google Scholar 

  94. Luwe, M. W. F., Takahama, U., & Heber, U. (1993). Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracia, L.) leaves. Plant Physiology, 101, 969–976.

    CAS  Google Scholar 

  95. Manning, W. J., Flgler, R. B., & Frekel, A. M. (2003). Assessing plant response to ambient O3: Growth of O3-sensitive loblolly pine seedlings treated with EDU and sodium erythorbate. Environmental Pollution, 126, 73–81.

    CAS  Google Scholar 

  96. Marrs, K. A. (1996). The function and regulation of glutathione S-transferases in plants. Annual Reviews of Plant Physiology and Plant Molecular Biology, 47, 127–158.

    CAS  Google Scholar 

  97. Mauzerall, D. L., & Wang, X. (2001). Protecting agricultural crops from the effects of tropospheric ozone exposure: Reconciling science and standard setting in the United States, Europe, and Asia. Annual Reviews of Energy and Environment, 26, 237–268.

    Google Scholar 

  98. McDonnell, W. F., Stewart, P. W., Smith, M. V., Pan, W. K., & Pan, J. (1999). Ozone-induced respiratory symptoms: Exposure–response models and association with lung function. European Respiratory Journal, 14, 845–853.

    CAS  Google Scholar 

  99. McKinnon, K. P., Madden, M. C., Noah, T. L., & Devlin, R. B. (1993). In vitro ozone exposure increases release of arachidonic acid products from a human bronchial epithelial cell line. Toxicology and Applied Pharmacology, 118, 215–223.

    CAS  Google Scholar 

  100. Mehlhorn, H., O’Shea, J. M., & Wellburn, A. R. (1991). Atmospheric ozone interacts with stress ethylene formation by plants to cause visible plant injury. Plant, Cell and Environment, 13, 971–976.

    Google Scholar 

  101. Meyer, A., Buhl, R., Kampf, S., & Magnussen, H. (1995). Intravenous N-acetylcysteine and lung glutathione of patients with pulmonary fibrosis and normals. American Journal of Respiratory Critical Care and Medicine, 152, 1055–1060.

    CAS  Google Scholar 

  102. Möller, I. M. (2001). Plant mitochondria and oxidative stress: Electron transport, NADPH turnover and metabolism of reactive oxygen species. Annual Reviews of Plant Physiology and Plant Molecular Biology, 52, 561–591.

    Google Scholar 

  103. Mudd, J. B., Leavitt, R., Ongun, A., & McManus, T. T. (1969). Reaction of ozone with amino acids and proteins. Atmospheric Environment, 3, 669–682.

    CAS  Google Scholar 

  104. Mudway, I. S., & Kelly, F. J. (2000). Ozone and the lung: A sensitive issue. Molecular Aspects of Medicine, 21, 1–48.

    CAS  Google Scholar 

  105. Mudway, I. S., & Kelly, F. J. (2004). An investigation of inhaled ozone dose and the magnitude of airway inflammation in healthy adults. American Journal of Respiratory Critical Care and Medicine, 169, 1089–1095.

    Google Scholar 

  106. Müller, C., & Riederer, M. (2005). Plant surface in chemical ecology. Journal of Chemical Ecology, 31, 2621–2651.

    Google Scholar 

  107. Mustafa, M. G. (1990). Biochemical basis of ozone toxicity. Free Radicals in Biology and Medicine, 9, 245–265.

    CAS  Google Scholar 

  108. Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant, Cell and Physiology, 22, 867–880.

    CAS  Google Scholar 

  109. Nali, C., Paoletti, E., Marabottini, R., Della Rocca, G., Lorenzini, G., & Paolacci, A. R., et al. (2004). Ecophysiological and biochemical strategies of response to ozone in Mediterranean evergreen broadleaf species. Atmospheric Environment, 38, 2247–2257.

    CAS  Google Scholar 

  110. Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annual Reviews of Plant Physiology and Plant Molecular Biology, 49, 249–279.

    CAS  Google Scholar 

  111. Ormrod, D. P., & Beckerson, D. W. (1986). Polyamines as antiozonant for tomato. Horticoltural Science, 21, 1070–1071.

    CAS  Google Scholar 

  112. Padh, H. (1990). Cellular functions of ascorbic acid. Biochemistry and Cell Biology, 68, 1166–1173.

    CAS  Article  Google Scholar 

  113. Paoletti, E. (2006). Impact of ozone on Mediterranean forests: A review. Environmental Pollution, 144, 463–474.

    CAS  Google Scholar 

  114. Passannante, A. N., Hazucha, M. J., Bromberg, P. A., Seal, E., Folinsbee, L., & Koch, G. (1998). Nociceptive mechanisms modulate ozone-induced human lung function decrements. Journal of Applied Physiology, 85, 1863–1870.

    CAS  Google Scholar 

  115. Peden, D. B., Hohman, R., Brown, M. E., Mason, R. T., Berkebile, C., & Fales, H. M. (1990). Uric acid is a major antioxidant in human nasal airway secretions. Proceedings of the National Academy of Sciences of the United States of America, 87, 7638–7642.

    CAS  Google Scholar 

  116. Pell, E. J., Eckardt, N., & Glick, R. E. (1994). Biochemical and molecular basis fort he impairment of photosynthetic potential. Photosynthesis Research, 39, 453–462.

    CAS  Google Scholar 

  117. Platt, U., & Hönninger, G. (2003). The role of halogen species in the troposphere. Chemosphere, 52, 325–338.

    CAS  Google Scholar 

  118. Pryor, W. A. (1992). How far does ozone penetrate into the pulmonary air/tissue boundary before it reacts? Free Radicals in Biology and Medicine, 12, 83–88.

    CAS  Google Scholar 

  119. Pryor, W. A. (1993). Ozone in all reactive splendour. Journal of Laboratory and Clinical Medicine, 122, 483–486.

    CAS  Google Scholar 

  120. Pryor, W. A. (1994). Mechanisms of radical formation from reactions of ozone with target molecules in the lung. Free Radicals in Biology and Medicine, 17, 451–465.

    CAS  Google Scholar 

  121. Pryor, W. A., Das, B., & Church, D. F. (1991). The ozonation of unsaturated fatty acids: Aldehydes and hydrogen peroxide as products and possible mediators of ozone toxicity. Chemical Research and Toxicology, 4, 341–348.

    CAS  Google Scholar 

  122. Quinton, P. M. (1979). Composition and control of secretions from tracheal bronchial submucosal glands. Nature, 279, 551–552.

    CAS  Google Scholar 

  123. Rahman, Q., Abidi, P., Afaq, F., Schiffmann, D., Mossman, B. T., & Kamp, D. V. (1999). Glutathione redox system in oxidative lung injury. Critical Reviews in Toxicology, 29, 543–568.

    CAS  Google Scholar 

  124. Rao, M. V., & Davis, K. R. (1999). Ozone-induced cell death occurs via two distinct mechanisms. The role of salicylic acid. Plant Journal, 16, 603–614.

    Google Scholar 

  125. Rao, M. V., & Davis, K. R. (2001). The physiology of ozone induced cell death. Planta, 213, 682–690.

    CAS  Google Scholar 

  126. Rao, M. V., Koch, J. R., & Davis, K. R. (2000a). Ozone, a tool for probing programmed cell death in plants. Plant Molecular Biology, 44, 345–358.

    CAS  Google Scholar 

  127. Rao, M. V., Lee, H.-L., & Davis, K. R. (2002). Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. Plant Journal, 32, 447–456.

    CAS  Google Scholar 

  128. Rao, M. V., Lee, H.-L., Creelman, R. A., Mullet, J. E., & Davis, K. R. (2000b). Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell, 12, 1633–1646.

    CAS  Google Scholar 

  129. Rauser, W. E. (1995). Phytochelatines and related peptides. Structure, biosynthesis and function. Plant Physiology, 109, 1141–1149.

    CAS  Google Scholar 

  130. Rautenkranz, A. A. F., Li, L., Mächler, F., Märinoia, E., & Oertli, J. J. (1994). Transport of ascorbic and dehydroascorbic acids across protoplast and vacuole membranes isolated from barley (Hordeum vulgare L. cv Gerbel). Plant Physiology, 106, 187–193.

    CAS  Google Scholar 

  131. Rawlings, A. V. (2006). Ethnic skin types: Are there differences in skin structure and function? International Journal of Cosmetic Science, 28, 79–83.

    CAS  Google Scholar 

  132. Reddy, G. N., Arteca, R. N., Dai, Y. R., Flores, H. E., Negram, F. B., & Pell, E. J. (1994). Changes in ethylene and polyamines in relation to mRNA levels of the large and small subunits of ribulose bisphosphate oxygenase in ozone stressed potato foliage. Plant, Cell and Environment, 120, 819–826.

    Google Scholar 

  133. Romieu, I., Sienra-Monge, J. J., Ramírez-Anguilar, M., Téllez-Rojo, M. M., Moreno-Marcías, H., & Reyes-Ruiz, N. I. (2002). Antioxidant supplementation and lung functions among children with asthma exposed to high levels of air pollutants. Journal of Respiratory Critical Care and Medicine, 166, 703–709.

    Google Scholar 

  134. Rowland-Bamford, A. J., Borland, A. M., Lea, P. J., & Mansfield, T. A. (1989). The role of arginine decarboxylase in modulating the sensitivity of barley to ozone. Environmental Pollution, 61, 95–106.

    CAS  Google Scholar 

  135. Royce, F. H., & Plopper, C. G. (1997). Effect of chronic daily ozone exposure on Clara cell secretory protein mRNA expression in the adult rat lung. Experimental Lung Research, 23, 51–64.

    CAS  Google Scholar 

  136. Rustow, B., Haupt, R., Stevens, R. A., & Kinze, D. (1993). Type II pneumocytes secrete vitamin D together with surfactant lipids. American Journal of Physiology, 265, L133–L139.

    CAS  Google Scholar 

  137. Samet, J. M., Hatch, G. E., Horstman, D., Steck-Scott, S., Arab, L., & Bromberg, P. A. (2001). Effect of antioxidant supplementation on ozone-induced lung injury in human subjects. Journal of Respiratory Critical Care and Medicine, 164, 819–825.

    CAS  Google Scholar 

  138. Sandermann, H., Ernst, D., Heller, W., & Langebartels, C. (1998). Ozone: An abiotic elicitor of plant defence reactions. Trends in Plant Science, 3, 47–50.

    Google Scholar 

  139. Sarnat, J. A., & Holguin, F. (2007). Asthma and air quality. Current Opinion in Pulmonary Medicine, 13, 63–66.

    CAS  Google Scholar 

  140. Schelegle, E. S., Siefkin, A. D., & McDonald, R. J. (1991). Time course of ozone-induced neutrophilia in normal humans. American Reviews in Respiratory Medicine, 143, 1353–1358.

    CAS  Google Scholar 

  141. Schuler, M. A. (1996). Plant cytochrome P450 monooxygenases. Critical Reviews in Plant Science, 15, 235–284.

    CAS  Google Scholar 

  142. Sharma, Y. K., Leon, J., Raskin, I., & Davis, K. R. (1996). Ozone-induced expression of stress-related genes in Arabidopsis thaliana: The role of salicylic acid in the accumulation of defence-related transcripts and induced resistance. Proceedings of the National Academy of Sciences of the United States of America, 93, 5099–5104.

    CAS  Google Scholar 

  143. Smirnoff, N., & Pallanca, J. E. (1995). Ascorbate metabolism in relation to oxidative stress. Biochemical Society Transactions, 24, 472–478.

    Google Scholar 

  144. Sterner-Kock, A., Kock, M., Braun, R., & Hyde, D. M. (2000). Ozone-induced epithelial injury in the ferret is similar in nonhuman primates. American Journal of Respiratory Critical Care and Medicine, 162, 1152–1156.

    CAS  Google Scholar 

  145. Tabor, C. W., & Tabor, H. (1984). Polyamines. Annual Reviews of Biochemistry, 53, 749–790.

    CAS  Google Scholar 

  146. Takahashi, N., Yu, X., Schofield, B. H., Kleeberger, S. R., Scott, A. L., & Hasegawa, S. (1995). Expression of ICAM-1 in airway epithelium after acute ozone exposure in the mouse. Journal of Applied Physiology, 79, 1753–1761.

    CAS  Google Scholar 

  147. Tepper, J. S., Costa, D. L., Fitzgerald, L., Doerfler, D. L., & Bromberg, P. A. (1993). Role of tachykinins in ozone-induced acute lung injury in guinea pigs. Journal of Applied Physiology, 75, 1404–1411.

    CAS  Google Scholar 

  148. Tingey, D. T., & Hogsett, W. E. (1985). Water stress reduces ozone injury via a stomatal mechanism. Plant Physiology, 77, 944–947.

    CAS  Google Scholar 

  149. Torsethaugen, G., Pell, E. J., & Assmann, S. M. (1999). Ozone inhibits guard cell K + channels implicated in stomatal opening. Proceedings of the National Academy of Sciences of the United States of America, 96, 13577–13582.

    CAS  Google Scholar 

  150. Tuominen, H., Overmyer, K., Keinanen, M., Kollist, H., & Kangasjarvi, J. (2004). Mutual antagonism of ethylene and jasmonic acid regulates ozone-induced spreading cell death in Arabidopsis. Plant Journal, 39, 59–69.

    CAS  Google Scholar 

  151. Van der Vliet, A., O’Neill, C. A., Cross, C. E., Koostra, J. M., Volz, W. G., Halliwell, B., & Louie, S. (1999). Determination of low-molecular-mass antioxidant concentrations in human respiratory tract lining fluids. American Journal of Physiology, 276, L289–L296.

    Google Scholar 

  152. Van der Vliet, A., & Cross, C. E. (2000). Oxidants, nitrosants and the lungs. American Journal of Medicine, 109, 398–421.

    Google Scholar 

  153. Violini, G., Maffi, D., Conti, G. G., Faoro, F., & Tornagli, R. (1992). Damage by ambient zone to bean leaves. Histological, histochemical and ultrastructural observations. Rivista Italiana di Patologia Vegetale, 2, 91–110.

    Google Scholar 

  154. Wang, W.-C., Liang, X.-Z., Dudek, M. P., Pollard, D., & Thompson, S. L. (1995). Atmospheric ozone as climate gas. Atmospheric Research, 37, 247–256.

    CAS  Google Scholar 

  155. Weinmann, G. G., Liu, M. C., Proud, D., Weidenbach-Gerbase, M., Hubbard, W., & Frank, R. (1995). Ozone exposure in humans: Inflammatory, small and peripheral airway responses. American Journal of Respiratory Critical Care and Medicine, 152, 1175–1182.

    CAS  Google Scholar 

  156. Widdicombe, J. (1997). Airway and alveolar permeability and surface liquid thickness: Theory. American Journal of Physiology, 82, 3–12.

    CAS  Google Scholar 

  157. Willekens, H., Inzé, D., Van Montagu, M., & Van Camp, W. (1995). Catalases in plants. Molecular Breeding, 1, 207–228.

    CAS  Google Scholar 

  158. Wojtaszek, P. (1997). Oxidative burst: An early plant response to pathogen infection. Biochemical Journal, 322, 681–692.

    CAS  Google Scholar 

  159. Yu, B. P. (1994). Cellular defenses against damage from reactive oxygen species. Physiological Reviews, 74, 139–162.

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Giovanni Lodi for providing Fig. 7. This research was partially supported by Progetto INFOGESO, Regione Lombardia, Piano per la Ricerca e lo Sviluppo 2004.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcello Iriti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iriti, M., Faoro, F. Oxidative Stress, the Paradigm of Ozone Toxicity in Plants and Animals. Water Air Soil Pollut 187, 285–301 (2008). https://doi.org/10.1007/s11270-007-9517-7

Download citation

Keywords

  • Atmospheric pollution
  • Tropospheric ozone
  • Reactive oxygen species
  • Antioxidant defences