Skip to main content
Log in

Characterization of the Salinisation Processes in Aquifers Using Boron Isotopes; Application to South-Eastern Spain

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Use of δ11B provides a solid tool for discriminating hydrogeochemical processes in complex coastal aquifers. Its efficiency increases markedly when it is applied along with other major or minor constituents. Nevertheless, various factors may affect its interpretation: the presence of clays, which favour adsorption and desorption, the influence of wastewaters, and even the presence of geothermalism. The δ11B has been applied to the study of a series of aquifers in south-eastern Spain: Castell de Ferro (Granada), Campo de Dalías, Lower Andarax and Sorbas (Almería), all of which are complex and heterogeneous. The results obtained demonstrate that the concentration of Br, the SO4/Cl and Cl/Br ratios are good indicators of marine intrusion. Inland some negative values of δ11B (−16.7 and −8.1‰) are related to a geothermal influence (34.8 and 51.5°C). The boron solubility is directly related to temperature favours boron mobilization, even from the associated metapelitic deposits. The difference in the boron isotope content in two carbonate units must be caused by the different composition of the carbonate rocks, as well as a long residence time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arad, A., Kafri, U., Halicz, L., & Brenner, I. (1986). Genetic identification of the saline origins of groundwaters in Israel by means of minor elements. Chemical Geology, 54, 251–270.

    Article  CAS  Google Scholar 

  • Arnorsson, S., & Andresdottir, A. (1995). Process controlling the distribution of boron and chlorine in natural waters in Iceland. Geochimica and Cosmochimica Acta, 59, 4125–4146.

    Article  CAS  Google Scholar 

  • Barth, S. (1993). Boron isotope variations in nature: A synthesis. Geologische Rundschau, 82(4), 640–651.

    Article  CAS  Google Scholar 

  • Barth, S. (1998a). Boron isotope geochemistry as a tracer for the evolution of natural aquatic systems. In Arehart & Hulston (Eds.), Water–Rock interaction. Balkema.

  • Barth, S. (1998b). 11B/10B variations of dissolved boron in a freshwater–seawater mixing plume (Elbe Estuary, North Sea). Marine Chemistry, 62, 1–14.

    Article  CAS  Google Scholar 

  • Barth, S. (2000). Utilisation of boron as a critical parameter in water quality evaluation: implications for thermal and mineral water resources in SW Germany and N Switzerland. Environmental Geology, 40(1–2), 73–89.

    Article  CAS  Google Scholar 

  • Basset, R. L., Buszka, P. M., Davidson, G. R., & Chong-Díaz, D. (1995). Identification of groundwater solute sources using boron isotopic composition. Environmental Science and Technology, 29(12), 2915–2922.

    Article  Google Scholar 

  • Calaforra, J. M., & Pulido-Bosch, A. (2003). Evolution of the gypsum karst of Sorbas (SE Spain). Geomorphology, 50(1–3), 173–180.

    Article  Google Scholar 

  • Calvache, M. L., & Pulido-Bosch, A. (1994). Modelling the effects of salt water intrusion dynamics for coastal karstified block connected to a detrital aquifer. Ground Water, 32(5), 767–777.

    Article  CAS  Google Scholar 

  • Custodio, E., & Herrera, C. (2000). Utilización de la relación Cl/Br como trazador hidrogeoquímico en hidrología subterránea. Boletín Geológico y Minero, 111(4), 49–68.

    Google Scholar 

  • Davis, S. N., Cecil, L. D., Zreda, M., & Moysey, S. (2001). Chlorine-36, bromide and the origin of spring water. Chemical Geology, 179, 3–16.

    Article  CAS  Google Scholar 

  • Duce, R. A., & Hoffman, E. J. (1976). Chemical fractionation at the air–sea interface. Annual Review of Earth and Planetary Sciences, 4, 187–228.

    Article  CAS  Google Scholar 

  • Eisenhut, S., Heumann, K. G., & Vengosh, A. (1996). Determination of boron isotopic variations in aquatic systems with negative thermal ionization mass spectrometry as a tracer for anthropogenic influences. Fresenius Journal of Analytical Chemistry, 354, 903–909.

    CAS  Google Scholar 

  • Gerritse, R., & George, R. J. (1988). The role of soil organic matter in the geochemical cycling of chloride and bromide. Journal of Hydrology, 101, 83–91.

    Article  CAS  Google Scholar 

  • Gregoire, D. C. (1987). Determination of boron isotope ratios in geological materials by inductively coupled plasma mass spectrometry. Analytical Chemistry, 59, 2479–2484.

    Article  CAS  Google Scholar 

  • Hsissou, Y., Mudry, J., Mania, J., Bouchaou, L., & Chauve, P. (1999). Use of the Br/Cl ratio to determine the origin of the salinity of groundwater: An example from the Souss plain (Morocco). Comptes rendus de l’Académie des sciences Paris, 323, série IIa, 381–386.

  • Kakianha, H., Ossaka, T., Oi, T., Musashi, M., & Nomura, M. (1989). Boron isotopic ratios of some hot springs waters in the Kusat-su-Shirane area, Japan. Geochemical Journal, 21, 133–137.

    Google Scholar 

  • Kastner, M., Elderfield, H., Martin, J. B., Suess, E., Kvenvolden, K. A., & Garrison, R. E. (1990). Diagenesis and interstitial-water chemistry at the Peruvian continental margin-major constituents and strontium isotopes. In E. Suess, R. von Huene et al., Proc. ODP, Sci. Results, 112: College Station, TX (Ocean Drilling Program), 413–440.

  • Kiss, E. (1988). Ion-exchange separation and spectrophotometric determination of boron in geological materials. Analytica Chimica Acta, 211, 243–256.

    Article  CAS  Google Scholar 

  • Larsen, D., Swihart, G., & Xiao, Y. (2001). Hydrochemistry and isotope compositions of springs in the Tecopa basin, southeastern California, USA. Chemical Geology, 179, 17–35.

    Article  CAS  Google Scholar 

  • Leenhouts, J. M., Basset, R. L., & Maddock, T. (1998). Utilisation of intrinsic boron isotopes as co-migrating tracers for identifying potential nitrate contamination sources. Ground Water, 36(2), 240–250.

    Article  CAS  Google Scholar 

  • Molina, L., Sánchez-Martos, F., Pulido-Bosch, A., & Vallejos, A. (2003). Origin of boron from a complex aquifer in Southeast of Spain. Environmental Geology, 44, 301–307.

    Article  CAS  Google Scholar 

  • Molina, L., Vallejos, A., Pulido-Bosch, A., & Sánchez-Martos, F. (2002). Water temperature and conductivity variability as indicators of groundwater behavior in complex systems in the south-east of Spain. Hydrological Processes, 16(17), 3365–3378.

    Article  Google Scholar 

  • Morell, I., Medina, J., Pulido-Bosch, A., & Fernández-Rubio, R. (1986). The use of bromide and strontium as indicators of marine intrusion in the aquifer of Oropesa-Torreblanca. Castellón. Spain. Proc. 9th. Salt Water Intrusion Meeting, Delft, Denmark 61–72.

  • Murray, K. S. (1996). Hydrology and geochemistry of thermal waters in the Upper Napa Valley, California. Ground Water, 34(6), 1115–1124.

    Article  CAS  Google Scholar 

  • Oi, T., Ikeda, K., Nakano, M., Ossaka, T., & Ossaka, J. (1996). Boron isotope geochemistry of hot springs waters in Ibusuki and adjacent areas, Kagoshima, Japan. Geochemical Journal, 30, 273–287.

    CAS  Google Scholar 

  • Oi, T., & Kakianha, H. (1993). Influence of seawater on boron isotopic compositions of hot springs waters in Japan. Seventh Simposium on Salt, I, 159–164.

    Google Scholar 

  • Pennisi, M., Bianchini, G., Muti, A., Kloppmann, W., & Gonfiantini, R. (2006a). Behaviour of boron and strontium isotopes in groundwater–aquifer interactions in the Cornia Plain (Tuscany, Italy). Applied Geochemistry, 21, 1169–1183.

    Article  CAS  Google Scholar 

  • Pennisi, M., Gonfiantini, R., Grassi, S., & Squarci, P. (2006b). The utilization of boron and strontium isotopes for the assessment of boron contamination of the Cecina River alluvial aquifer (central-western Tuscany, Italy). Applied Geochemistry, 21, 643–655.

    Article  CAS  Google Scholar 

  • Pennisi, M., Leeman, W. P., Tonarini, S. Pennisi, A., & Nabelek, P. (2000). Boron, Sr, O, and H isotope geochemistry of groundwaters from Mt. Etna (Sicily): Hydrologic implications. Geochimica and Cosmochimica Acta, 64(6), 961–974.

    Article  CAS  Google Scholar 

  • Plummer, L. N., Wigley, T., & Parkhurst, D. (1978). The kinetics of calcite disolution in CO2 water systems at 5 to 60 C and 0.0 to 1.0 atm CO2. American Journal of Sciences, 278, 179–216.

    CAS  Google Scholar 

  • Pulido-Bosch, A., Bensi, S., Molina, L., Vallejos, A., Calaforra, J. M., & Pulido-Leboeuf, P. (2000). Nitrates as indicators of aquifer interconnection. Application to the Campo de Dalías (SE-Spain). Environmental Geology, 39(7), 791–799.

    Article  CAS  Google Scholar 

  • Pulido-Bosch, A., Calaforra, J. M., Pulido-Leboeuf, P., & Torres-Garci’a, S. (2004). Impact of quarrying gypsum in a semidesert karstic area (Sorbas, SE Spain). Environmental Geology, 46(5), 583–590.

    Article  Google Scholar 

  • Pulido-Bosch, A., Navarrete, F., Molina, L., & Martínez-Vidal, J. L. (1991). Quantity and quality of groundwater in the Campo de Dalias (Almería, SE Spain). Water Science and Technology, 24(11), 87–96.

    CAS  Google Scholar 

  • Pulido-Leboeuf, P. (2004). Seawater intrusion and associated processes in a small coastal complex aquifer (Castell de Ferro, Spain). Applied Geochemistry, 19, 1517–1527.

    Article  CAS  Google Scholar 

  • Pulido-Leboeuf, P., Pulido-Bosch, A., Calvache, M. L., Vallejos, A., & Andreu, J. M. (2003). Strontium and \( {{\text{SO}}^{{2 - }}_{4} } \mathord{\left/ {\vphantom {{{\text{SO}}^{{2 - }}_{4} } {{\text{Cl}}^{ - } }}} \right. \kern-\nulldelimiterspace} {{\text{Cl}}^{ - } } \) and Mg2+/Ca2+ ratios as tracers for the evolution of seawater into coastal aquifers. The example of Castell de Ferro Aquifer (SE Spain). Comptes Rendus Geoscience, 335, 1039–1048.

    Article  CAS  Google Scholar 

  • Richter, B. C., & Kreitler, C. W. (1993). Geochemical techniques for identifying sources of groundwater salinization. New York: CRC press 258 p.

    Google Scholar 

  • Sanders, L. L. (1991). Geochemistry of formation waters from the Lower Silurian Clinton formation (Albien, Sandstone), Eastern Ohio. The American Association of Petroleum Geologists Bulletin, 75, 1593–1608.

    CAS  Google Scholar 

  • Sánchez-Martos, F. (1997). Hydrogeochemical study of Lower Andarax (Almería). Doctoral Thesis (in Spanish). University of Granada. 290 p.

  • Sánchez-Martos, F., & Pulido-Bosch, A. (1999). Boron and the origin of salinization in an aquifer in southeast Spain. Comptes rendus de l’Académie des sciences Paris, 328, 751–757.

    Google Scholar 

  • Sánchez-Martos, F., Pulido Bosch, A., Molina Sánchez, L., & Vallejos Izquierdo, A. (2002). Identification of the origin of salinization in groundwater using minor ions (Lower Andarax, southeast Spain). The Science of the Total Environment, 297, 43–58.

    Article  Google Scholar 

  • Ulhman, K. (1991). The geochemistry of boron in a landfill monitoring program. Ground Water Monitoring & Remediation, 11(4), 139–143.

    Article  Google Scholar 

  • Vallejos, A., Pulido-Bosch, A., Martín-Rosales, W., & Calvache, M. L. (1997). Contribution of environmental isotopes to the knowledge of complex hydrologic systems. A case study: Sierra de Gador (SE Spain). Earth Surface Processes and Landforms, 22, 1157–1168.

    Article  CAS  Google Scholar 

  • Vengosh, A., Chivas, A. R., McCulloch, M., Starinsky, A., & Kolodny, Y. (1991a). Boron isotope geochemistry of Australian salt lakes. Geochimica et Cosmochimica Acta, 55, 2591–2606.

    Article  CAS  Google Scholar 

  • Vengosh, A., Chivas, A. R., Starinsky, A., Kolodny, Y., Baozhen, Z., & Pengxi, Z. (1995). Chemical and boron isotope compositions of non-marine brines from the Qaidam Basin, Qinghai, China. Chemical Geology, 120, 135–154.

    Article  CAS  Google Scholar 

  • Vengosh, A., De Lange, G. J., & Starinshy, A. (1998). Boron isotope and geochemical evidence of Urania and Bannock brines at the eastern Mediterranean: Effect of water–rock interactions. Geochimica et Cosmochimica Acta, 62, 3221–3228.

    Article  CAS  Google Scholar 

  • Vengosh, A., Helvaci, C., & Karamanderesi, I. H. (2002). Geochemical constraints for the origin of thermal waters from western Turkey. Applied Geochemistry, 17, 163–183.

    Article  CAS  Google Scholar 

  • Vengosh, A., Heumann, K. G., Juraske, S., & Kasher, R. (1994a). Boron isotope application for tracing sources of contamination in groundwater. Environmental Science & Technology, 28(11), 1968–1974.

    Article  CAS  Google Scholar 

  • Vengosh, A., Spivack, A. J., Artzi, Y., & Ayalon, A. (1999). Geochemical of boron, strontium and oxygen isotopic constraints on the origin of the salinity in groundwater from the Mediterranean coast of Israel. Water Resources Research, 35(6), 1877–1894.

    Article  CAS  Google Scholar 

  • Vengosh, A., Starinsdy, A., Kolodny, Y., & Chivas, A. R. (1991b). Boron isotope geochemistry as a tracer for the evolution of brines and associated hot springs from the Dead Sea, Israel. Geochimica et Cosmochimica Acta, 55, 1689–1695.

    Article  CAS  Google Scholar 

  • Vengosh, A., Starinsky, A., Kolodny, Y., & Chivas, A. R. (1994b). Boron isotope geochemistry of thermal springs from the northern Rift Valley, Israel. Journal of Hydrology, 162, 155–169.

    Article  CAS  Google Scholar 

  • Williams, L., Hervig, R., Wieser, M. E., & Hutcheon, I. (2001). The influence of organic matter on the boron isotope geochemistry of the gulf coast sedimentary basin, USA. Chemical Geology, 174, 445–461.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article was written within the framework of project HID99-0597-CO2, financed by the Spanish CICYT Interministerial Commission of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Vallejos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morell, I., Pulido-Bosch, A., Sánchez-Martos, F. et al. Characterization of the Salinisation Processes in Aquifers Using Boron Isotopes; Application to South-Eastern Spain. Water Air Soil Pollut 187, 65–80 (2008). https://doi.org/10.1007/s11270-007-9497-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9497-7

Keywords

Navigation