Skip to main content
Log in

Using EEFM (Excitation Emission Fluorescence Matrix) to Differentiate the Organic Properties of the Effluents from the Ozonated Biofilters

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

This study conducted a two-stage experiment. The first stage attempted to establish biostable filter beds. Two parameters, total bacterial count (TBC) and non-purgeable dissolved carbon (NPDOC), measured by passing through a 0.2 μm membrane filter, were selected to compare the difference of biostability of a filtration system with recirculation with different O3-to-NPDOC ratios of filtered water. The excitation emission fluorescence matrix (EEFM) was used as an effective tool for understanding information regarding organic characteristics by comparing source filtered water before and after ozonation and the effluent during biostablizing filter. During the second stage, a biostable filter was used to compare differences in biodegradability of ozonated products sodium oxalate and sodium acetate. Experimental results demonstrate that both parameters, NPDOC removal and TBC, can be utilized to evaluate the biostabilty of a filter bed. With each parameter, a plateau was reached in roughly 20 days. The source water from Chen Ching Lake (CCL) contained a protein-like substance determined by the EEFM. This protein-like substance was also destroyed by O3/NPDOC = 1.1. Soluble microbial products (SMPs) released from the biostablizing filter into the effluent have two peaks in the EEFM, identified as protein-like and humic-like acid. The NPDOC removal for the biostabilizing filter using O3/NPDOC = 1.7 was less than that using O3/NPDOC = 1.1. Bacterial counts in the effluent from the biostabilizing filter using O3/NPDOC = 1.1 was better than that of O3/NPDOC = 1.7. This difference can be explained by the high ratio of O3/NPDOC producing by-products of ozonation that were easily utilized by microorganisms; however, filter bed also released relatively more SMPs owing to increased proliferation of microorganisms attached to glass pellets in the filter. Regarding the differences in decomposition of the by-products of ozonation by the biostable filter, such as sodium oxalate, the NPDOC removal at O3/NPDOC = 1.1 was better than that at O3/DOC = 1.7. This phenomenon can be explained as previously mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology and Molecular Biology Reviews, 59(1), 146–169.

    Google Scholar 

  • Bratbak, G. (1985). Bacterial biovolume and biomass estimations. Applied and Environmental Microbiology, 49(6), 1488–1493.

    Google Scholar 

  • Bratbak, G., & Dundas, I. (1984). Bacterial dry matter content and biomass estimations. Applied and Environmental Microbiology, 48, 755–757.

    CAS  Google Scholar 

  • Calson, K. H., & Amy, G. L. (2000). The importance of soluble microbial products (SMPS) in biological drinking water treatment. Water Research, 34(4), 1386–1396.

    Article  Google Scholar 

  • Cipparone, L. C., Diehl, A. C., & Speitel Jr., G. E. (1997). Ozonation and BDOC removal: effect on water quality. Journal AWWA, 89(2), 84–97.

    CAS  Google Scholar 

  • Determann, S., Lobbes, J. M., Reuter, R., & Rullkötter, J. (1998). Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria. Marine Chemistry, 62(1–2), 137–156.

    Article  CAS  Google Scholar 

  • Escobar, I. C., Hong, S., & Randall, A. A. (2000). Removal of assimilable organic carbon and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration membrane, Journal of Membrane Science, 175, 1–17.

    Article  CAS  Google Scholar 

  • Frias, J., Ribas, F., & Lucena, F. (1992). A method for the measurement of biodegradable organic carbon in drinking water. Water Research, 26(2), 255–258.

    Article  CAS  Google Scholar 

  • Gagnon, G. A., Booth, S. D. J., Peldszus, S., Mutti, D., Smith, F., & Huck, P. M. (1997). Carboxylic acids: formation and removal in full scale plants. Journal AWWA, 89(8), 88–97.

    CAS  Google Scholar 

  • Griffini, O., & Iozzelli, P. (1996). The influence of H2O2 in ozonation treatment: experience of the water supply service of Florence, Italy. Ozone: Science & Engineering, 18(2), 117–126.

    Article  CAS  Google Scholar 

  • Her, N., Amy, G., Park, H., & Song, M. (2004). Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Research, 38, 1427–1438.

    Article  CAS  Google Scholar 

  • Hu, J. Y., Wang, Z. S., Ng, W. J., & Ong, S. L. (1999). The effect of water treatment processes on the biological stability of potable Water. Water Research, 33(11), 2587–2592.

    Article  CAS  Google Scholar 

  • Huck, P. M., Fedorak, P. M., & Anderson, W. B. (1991). Formation and removal of assimilable organic carbon during biological treatment. Journal AWWA, 83(12), 69–80.

    CAS  Google Scholar 

  • Joret, J. C., Levi, Y., & Volk, C. (1991). Biodegradable dissolved organic carbon (BDOC) content of drinking water and potential regrowth of bacteria. Water Science and Technology, 24(2), 95–101.

    CAS  Google Scholar 

  • Kaplan, L. A., & Newbold, J. D. (1995). Measurement of streamwater biodegradable dissolved organic carbon with a plug-flow bioreactor. Water Research, 29(12), 2696–2706.

    Article  CAS  Google Scholar 

  • Kim, W. H., Nishijima, W., Baes, A. U., & Okada, M. (1997). Micropollutant removal with saturated biological activated carbon (BAC) in ozonation-BAC process. Water Science and Technology, 36(12), 283–298.

    Article  CAS  Google Scholar 

  • LeChevallier, M. W. (1990). Coliform regrowth in drinking water: a review. Journal AWWA, 82(11), 74–86.

    CAS  Google Scholar 

  • LeChevallier, M. W. (1999). The case for maintaining a disinfectant residual. Journal AWWA, 91(1), 86–94.

    CAS  Google Scholar 

  • LeChevallier, M. W., Babcock, T. M, & Lee, R. G. (1987). Examination and characterization of distribution system biofilms. Applied and Environmental Microbiology, 53(12), 2714–2724.

    CAS  Google Scholar 

  • Lucena, F., Frias, J., & Ribas, F. (1990). A new dynamic approach to the determination of biodegradable dissolved organic carbon in water. Environmental Technology, 12, 343–347.

    Article  Google Scholar 

  • Mopper, K., & Schultz, C. A. (1993). Fluorescence as a possible tool for studying the nature and water column distribution of DOC components. Marine Chemistry, 41, 229–238.

    Article  CAS  Google Scholar 

  • Nobel, P. A., Clark, D. L., & Olson, B. H. (1996). Biological stability of groundwater. Journal AWWA, 88(5), 87–96.

    Google Scholar 

  • Owen, D. M, & Chowdhury, Z. K. (1993). The role of surrogates for natural organic matter in water treatment, September 19–22 1993, Chamonix, France, 115–125.

  • Porter, K. G., & Feigh, Y. S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography, 25(5), 943–948.

    Article  Google Scholar 

  • Ribas, F., Frias, J., & Lucena, F. (1991). A new dynamic method for the rapid determination of biodegradable dissolved organic carbon in drinking water. Journal of Applied Bacteriology, 71, 371–378.

    CAS  Google Scholar 

  • Rittmann, B. E. (1987). A critical evaluation of microbial product formation in biological processes. Water Science and Technology, 19(7), 517–528.

    CAS  Google Scholar 

  • Rittmann, B. E., Stilwell, D., Garside, J. C., Amy, G. L., Spangenberg, C., Kalinsky, A., et al. (2002). Treatment of colored groundwater by ozone-biofiltration:pilot studies and modeling interpretation. Water Research, 36(13), 3387–3397.

    Article  CAS  Google Scholar 

  • Senesi, N. (1990). Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals. Part II. The fluorescence spectroscopy approach. Analytica Chimica Acta, 232, 77–106.

    Article  CAS  Google Scholar 

  • Seredyńska-Sobecka, B., Tomaszewska, M., & Janus, M. (2006). Biological activation of carbon filters. Water Research, 40(2), 355–363.

    Article  CAS  Google Scholar 

  • Servais, P., Anzil, A., & Ventresque, C. (1989). Simple method for determination of biodegradable dissolved organic matter in waters. Applied and Environmental Microbiology, 55(10), 2732–2734.

    CAS  Google Scholar 

  • Servais, P., Billen, G., & Hascoet, M. (1987). Determination of the biodegrable fraction of dissolved organic matter in waters. Water Research, 21(4), 445–450.

    Article  CAS  Google Scholar 

  • Servais, P., Billen, G., Ventresque, C., & Bablon, G. P. (1991). Microbial activity in GAC filters at the Choisy-Le-Roi treatment plant. Journal AWWA, 83(2), 62–68.

    CAS  Google Scholar 

  • Servais, P., Laurent, P., & Randon, G. (1995). Comparison of the bacterial dynamics in various French distribution system. Journal Water SRT-Aqua, 44(1), 10–17.

    CAS  Google Scholar 

  • Sibille, I., Mathieu, L., Paquin, J. L., Gatel, D., & Block, J. C. (1997). Microbial characteristics of a distribution system fed with nanofiltered drinking water. Water Research, 31(9), 2318–2326.

    Article  CAS  Google Scholar 

  • Suzuki, Y., Yamaguchi, Y., Suzuki, S., Hirata, S., Aihara, M., & Hiraki, K. (2001). Characteristics of aquatic humic substance in natural water by synchronous fluorescence spectrum. Analytical Science, 17, i1605–i1608.

    Article  Google Scholar 

  • Te Welscher, R. A. G., Schellart, J. A., & de Visser, P. M. (1998) Experience with fifteen years of drinking water distribution without a chlorine residual. Paper presented at the Specialized Conference on Drinking Water Distribution With or Without Disinfectant Residua;1998 Sep 28–30; Muleim and der Ruhr, Germany.

  • Tobison, J. E., Edzwald, J. K., Reckhow, D. A., & Switzenbaum, M. S. (1993). Effect of preozonation on organics removal by in-line direct filtration, Water Science and Technology, 27(11), 81–90.

    Google Scholar 

  • Trussell, R. R. (1999) An overview of disinfectant residuals in drinking water distribution systems. Journal Water SRT-Aqua, 48(1), 2–10.

    CAS  Google Scholar 

  • Tsai, Y. P. (2005). Simulation of biofilm formation at different assimilable organic carbons under lower flow velocity condition. Journal of Basic Microbiology, 45, 475–485.

    Article  CAS  Google Scholar 

  • Van der Kooij, D. (1990). Assimilable organic carbon (AOC) in drinking water, in drinking water microbiology. Mcfeter, G. A. (ed.) New York: Springer-Verlag, pp 57–87.

    Google Scholar 

  • Van der Kooij, D., van Lieverloo, J. H. M., Schellart, J., & Hiemstra, P. (1999a). Maintaining quality without a disinfectant residual. Journal AWWA, 91(1), 55–64.

    Google Scholar 

  • Van der Kooij, D., Van Lieverloo, J. H. M., Schellart, J. A., & Hiemstra, P. (1999b). Distributing drinking water without disinfectant: highest achievement or height of folly? Journal Water SRT-Aqua, 48(1), 31–37.

    Google Scholar 

  • Van der Kooij, D., Visser, A., & Hijnen, W. A. M. (1982). Determining the concentration of easily assimilable organic carbon. Journal AWWA, 74(10), 540–545.

    Google Scholar 

  • Volk, C., Bell, K., Ibrahim, E., Verges, D., Amy, G., & Lechevallier, M. (2000). Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water. Water Research, 34(12), 3247–3257.

    Article  CAS  Google Scholar 

  • Wierenga, J. T. (1985). Recovery of coliforms in the presence of free chlorine residual. Journal AWWA, 77(11), 83–88.

    CAS  Google Scholar 

  • Wu, F. C., Tanoue, E., & Liu, C. Q. (2003). Fluorescence and amino acid characteristics of molecular size fractions of DOM in the waters of Lake Biwa. Biogeochemistry, 65, 245–257.

    Article  Google Scholar 

  • Yavich, A. A., Lee, K. K., Chen, K. C., Pape, L., & Masten, S. J. (2004). Evaluation of biodegradability of NOM after ozonation. Water Research, 38(12), 2839–2846.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract No. NSC92-2211-E-127-01 and NSC93-2211-E-127-01) for their 2 years’ sponsorship to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Liang Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, WL., Chen, LF., Liao, SW. et al. Using EEFM (Excitation Emission Fluorescence Matrix) to Differentiate the Organic Properties of the Effluents from the Ozonated Biofilters. Water Air Soil Pollut 186, 43–53 (2007). https://doi.org/10.1007/s11270-007-9461-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9461-6

Keywords

Navigation