Skip to main content

Advertisement

Log in

Chemical Characterization and Source Apportionment of Size-Segregated Aerosol Collected at an Urban Site in Sicily

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Aerosol samples were collected at Catania (Italy), from 16 March to 13 June 2005. The sampling was performed using a low pressure five-stage Berner cascade impactor. The samples were analysed for total aerosol mass, Water Soluble Organic Carbon (WSOC), Total Carbon (TC) and main inorganic ionic species. The Water-Insoluble Carbon (WINC) was derived by the difference: TC-WSOC. The samples share some common features: ammonium sulphate and carbon-containing species (both soluble and insoluble) are the largest contributors of fine particle mass, while coarse particles essentially consist of sea-salt, sodium nitrate and unaccounted PM (probably crustal material). The WINC/WSOC ratio decreases from the smallest size range to the large accumulation mode range (0.42–1.2 μm), while the \({\text{nssSO}}^{ = }_{4} \) and \( {\text{NH}}^{ + }_{4} \) contribution rises. The water-insoluble carbonaceous matter is the dominant component in the smallest particles (0.05–0.14 μm). We identified four different aerosol types, corresponding to different sources, contributing to the total particles load of the investigated urban environment: vehicular traffic, producing primary carbonaceous insoluble particles, secondary aerosols, dominating the composition of accumulation mode particles, and marine particles and mineral dust (both important components of the coarse aerosol fraction).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen, A. G., Mather, T. A., McGonigle, A. J. S, Aiuppa, A., Delmelle, A., Davison, B., et al. (2006). Source, size distribution, and downwind grounding of aerosols from Mount Etna. Journal of Geophysical Research, 111, D10302.

  • Almeida, S. M., Pio, C. A., Freitas, M. C., Reis, M. A., & Trancoso, M. A. (2006). Source apportionment of atmospheric urban aerosol based on weekdays/weekend variability: Evaluation of road re-suspended dust contribution. Atmospheric Environment, 40, 2058–2067.

    Article  CAS  Google Scholar 

  • Cachier, H., Bremond, M. P., & Buat-Menard, P. (1989). Determination of atmospheric soot carbon with a simple thermal method. Tellus, 41B, 379–390.

    CAS  Google Scholar 

  • Coe, H., Allan, J. D., Alfarra, M. R., Bower, K. N., Flynn, M. J., McFiggans, G. B., et al. (2006). Chemical and physical characteristics of aerosol particles at a remote coastal location, Mace Head, Ireland, during NAMBLEX. Atmospheric Chemistry and Physics, 6, 3289–3301.

    CAS  Google Scholar 

  • Fujitani, Y., Hasegawa, S., Fushimi, A., Kondo, Y., Tanabe, K., Kobayashi, S., et al. (2006). Collection characteristics of low-pressure impactors with various impaction substrate materials. Atmospheric Environment, 40, 3221–3229.

    Article  CAS  Google Scholar 

  • Gelencser, A., Hoffer, A., Molnar, A., Krivacsy, Z., Kiss, G., & Meszaros, E. (2000). Thermal behaviour of carbonaceous aerosol from continental background site. Atmospheric Environment, 34, 823–831.

    Article  CAS  Google Scholar 

  • Heintzenberg, J., Muller, K., Birmili, W., Spindler, G., & Wiedensohler, A. (1998). Mass-related aerosol properties over Leipzig basin. Journal of Geophysical Research, 103, 13125–13135.

    Article  CAS  Google Scholar 

  • Kleeman, M. J., Schauer, J. J., & Cass, A. (2000). Size and composition distribution of fine particulate matter emitted from motor vehicles. Environmental Science & Technology, 34(7), 1132–1142.

    Article  CAS  Google Scholar 

  • Longley, I. D., Gallagher, M. W., Dorsey, J. R., Flynn, M., Allan, J. D., Alfarra, M. R., et al. (2003). A case study of aerosol (4.6 nm<Dp<10 mm) number and mass size distribution measurements in a busy street canyon in Manchester, UK. Atmospheric Environment, 37, 1563–1571.

    Article  CAS  Google Scholar 

  • Matta, E., Facchini, M. C., Decesari, S., Mircea, M., Cavalli, F., Fuzzi, S., et al. (2003). Mass closure on the chemical species in size-segregated atmospheric aerosol collected in an urban area of the Po Valley, Italy. Atmospheric chemistry and Physics, 3, 623–637.

    Article  CAS  Google Scholar 

  • Mayol-Bracero, O. L., Guyon, P., Graham, B., Andreae, M. O., Decesari, S., Facchini, M. C., et al. (2002). Black carbon, organic carbon and water soluble organic compounds in biomass smoke particles over the Amazon Basin. Journal of Geophysical Research, 107, 8091.

    Article  CAS  Google Scholar 

  • Motta, S., Librando, V., Minniti, Z., Federico, C., & Saccone, S. (2006). Identification of genotoxic compounds in the airborne particulate matter endowed by small aerodynamic diameter in the city of Catania (Italy). Journal of Analytical, Environmental and Cultural Heritage Chemistry, 96(9–10), 537–542.

    CAS  Google Scholar 

  • Raes, F., Bates, T., McGovern, F., & van Liedekerke, M.(2000). The 2nd aerosol characterization experiment (ACE-2): General overview and main results. Tellus, 52B, 111–125.

    CAS  Google Scholar 

  • Pio, C. A, & Lopes, D. A. (1998). Chlorine loss from marine aerosol in a coastal atmosphere. Journal of Geophysical Research, 103(D19), 25263–25272.

    Article  CAS  Google Scholar 

  • Putaud, J.-P., Van Dingenen, R., Dell’Acqua, A., Raes, F., Matta, E., Decesari, S., et al. (2002). Size-segregated aerosol mass closure and chemical composition. Monte Cimone (I) during Minatroc. Atmospheric Chemistry and Physics Discussions, 3, 4097–4127.

    Google Scholar 

  • Putaud, J. P., Van Dingenen, R., Mangoni, M., Virkkula, A., Raes, F., Maring, H., et al. (2000). Chemical mass closure and assessment of the origin of the submicron aerosol in the marine boundary layer and the free troposphere at Tenerife during ACE-2. Tellus, 52B, 141–168.

    CAS  Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric chemistry and physics—from air pollution to climate change. New York: Wiley Interscience.

    Google Scholar 

  • Turpin, B. J., Saxena, P., & Andrews, E., (2000). Measuring and simulating particulate organics in the atmosphere. Atmospheric Environment, 34, 2983–3013.

    Article  CAS  Google Scholar 

  • Zanini, G., Pignatelli, T., Monforti, F., Vialetto, G., Vitali, L., Brusasca, G., et al. (2005). The MINNI project: An integrated assessment modeling system for policy making. In A. Zerger & R. M. Argent (Eds.), MODSIM 2005 International Congress on Modelling and Simulation (pp. 170–176. ISBN: 0-9758400-2-9). Modelling and Simulation Society of Australia and New Zealand.

  • Zappoli, S., Andracchio, A., Fuzzi, S., Facchini, M. C., Gelencsér, A., Kiss, G., et al. (1999). Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility. Atmospheric Environment, 33, 2733–2743.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by MIUR, Rome, COFIN 2004, Project “Functional and Structural Characteristics of Atmospheric Particulate Organic Matter in Urban Areas”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rinaldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinaldi, M., Emblico, L., Decesari, S. et al. Chemical Characterization and Source Apportionment of Size-Segregated Aerosol Collected at an Urban Site in Sicily. Water Air Soil Pollut 185, 311–321 (2007). https://doi.org/10.1007/s11270-007-9455-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9455-4

Keywords

Navigation