Skip to main content

Advertisement

Log in

Multi-Block Data Modeling for Characterization of Soil Contamination: A Case Study

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Multi-block (heavy metals, pesticides, physico-chemical parameters) data set pertaining to the soils of alluvium region in Indo-Gangetic plains was analyzed using principal component analysis (PCA) and multiple factor analysis (MFA) methods to delineate the contaminated sites and to identify the possible contamination sources in the study region. In normal PCA, the first three factors were dominated mainly by heavy metals, pesticides and physico-chemical variables, respectively, thus identifying samples/sites contaminated with these. The MFA results, due to its unique weighting scheme of variables of different blocks extracted, to more realistic information about the spatial distribution of samples and relationships among the variables. MFA minimized the influence of variables of one single block on the first few components, allowing variables of all blocks equally to share the common MFA space. This resulted in delineating the sites/regions contaminated with variables (Al, Co, Cu, Mn, Ni, Pb, V, Na, SO4, aldrin, lindane, HCB, HCH, DDT, and endosulfan) of all the blocks, rather than by particular block variables as in case of normal PCA, where, the variables of single block dominate the first factors, suppressing other block variables. MFA which can be considered as a method for standardization of the multi-block variables was successfully applied to the three block data set of soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrade, J. M., Gomez-Carracedo, M. P., Krzanowski, W., & Kubista, M. (2004). Procrustes rotation in analytical chemistry, a tutorial. Chemometrics and Intelligent Laboratory Systems, 72, 123–132.

    Article  CAS  Google Scholar 

  • CGWB (1999). In Hydrogeology and groundwater potential of Unnao district, Uttar Pradesh. Central Ground Water Board (Northern Region), Ministry of Water Resources, Government of India.

  • Chapman, D., & Kimstach V. (1992). In: Chapman, D. (Ed.), Water quality assessments: A guide to the use of biota, sediments and water in environmental monitoring. London: Chapman & Hall, SE1 8HN.

    Google Scholar 

  • Escofier, B., & Pages, J. (1990). Analysis factorielles simples et multiples: Objectifs, methods, interpretations. Paris: Dunod.

    Google Scholar 

  • Escofier, B., & Pages, J. (1994). Multiple factor analysis (AFMULT package). Computational Statistics & Data Analysis, 18, 121–140.

    Article  Google Scholar 

  • Gupta, P. K. (2001). Methods in environmental analysis: Water, soil and air. Jodhpur, India: Agrobios.

    Google Scholar 

  • Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M. & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis. Water Research, 34, 807–816.

    Article  CAS  Google Scholar 

  • Kalra, Y. P., & Maynard, D. G. (1991). Methods manual for forest soil and plant analysis. Admonton, Alberta: Forestry Canada, North West Region, Northern Forestry Centre. (Inf. Rep. NOR-X-319)

    Google Scholar 

  • Lautre, I. G., & Fernandez, E. A. (2004). A methodology for measuring latent variables based on multiple factor analysis. Computational Statistics & Data Analysis, 45, 505–517.

    Article  Google Scholar 

  • Miller, S. L., Anderson, M. J., Daly, E. P., & Milford, J. B. (2002). Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data. Atmospheric Environment, 36, 3629–3641.

    Article  CAS  Google Scholar 

  • Naidu, A. S., Mowati, T. C., Somayajulu, B. L. K., & Rao, K. S. (1985). Characteristics of clay minerals in the bed loads of major rivers of India. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, 58, 559–568.

    Google Scholar 

  • Sharma, V. P., Dixit, B. S., Banerji, R., & Seth, P. K. (2002). Organochlorine insecticide residues and fluoride concentration in groundwater of Unnao, India. Pollution Research, 21, 349–353.

    CAS  Google Scholar 

  • Simeonov, V., Stratis J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., et al. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37, 4119–4124.

    Article  CAS  Google Scholar 

  • Singh, M., Ansari, A. A., Muller, G., & Singh, I. B. (1997) Heavy metals in freshly deposited sediments of the Gomti River (a tributary of the Ganga River): Effects of human activities. Environmental Geology, 29, 246–252.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., Singh, V. K., & Sinha, S. (2006a). Evaluation of groundwater quality in Northern Indo-Gangetic alluvium region. Environmental Monitoring and Assessment, 112, 211–223.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Research, 38, 3980–3992.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2005d). Persistent organochlorine pesticide residues in alluvial groundwater aquifers of Gangetic plains, India. Bulletin of Environmental Contamination and Toxicology, 74, 162–169.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., Sinha, S., & Singh, V. K. (2005a). Chemometric data analysis of pollutants in wastewater—A case study. Analytica Chimica Acta, 532, 15–25.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Takroo, R. (2005c). Distribution of persistent organochlorine pesticide residues in Gomti river, India. Bulletin of Environmental Contamination and Toxicology, 74, 146–154.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Singh, V. K. Mohan, D., & Sinha, S. (2005b). Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India. Analytica Chimica Acta, 550, 82–91.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., & Sinha, S. (2006b). Persistent organochlorine pesticide residues in soil and surface water of Northern Indo-Gangetic alluvial plains. Environmental Monitoring and Assessment, 125, 147–155.

    Article  CAS  Google Scholar 

  • Stanimirova, I., Walczak, B., & Massart, D. L. (2005). Multiple factor analysis in environmental chemistry. Analytica Chimica Acta, 545, 1–12.

    Article  CAS  Google Scholar 

  • Tauler, R., Lacorte, S., Guillamon, M., Cespesdes, R., Viana, P., & Barcelo, D. (2004). Chemometric modeling of main contamination sources in surface waters of Portugal. Environmental Toxicology and Chemistry, 23, 563–575.

    Article  Google Scholar 

  • UNEP (2003). Global report on regionally based assessment of persistent toxic substances. Geneva, Switzerland: UNEP Chemicals.

    Google Scholar 

  • Vandeginste, B. G. M., Massart, D. L., Buydens, L. M. C., De Jong, S., Lewi, P. J., & Smeyers-Verbeke, J. (1998). In: Handbook of chemometrics and qualimetrics: Part B. Amsterdam, The Netherlands: Elsevier Science B.V.

  • Walkely, A., & Black, I. A. (1934) An examination of the Degthreff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  Google Scholar 

  • Yunker, M. B., & Macdonald, R. B. (2003) Canada. Alkane and PAH depositional history, sources and fluxes in sediments from the Fraser River Basin and Strait of Georgia, Canada. Organic Geochemistry, 34, 1429–1454.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Director, Industrial Toxicology Research Centre, Lucknow for the keen interest in this work and CSIR (New Delhi, India) for the financial assistance provided under Network project-COR-0005. Analytical support (U, Th) provided by NGRI, Hyderabad (India) is thankfully acknowledged. We are also thankful to Prof. I. Stanimirova (Vrije Universitiet, Brussels, Belgium) for the suggestions and help in multi-block data modeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunwar P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, K.P., Malik, A., Sinha, S. et al. Multi-Block Data Modeling for Characterization of Soil Contamination: A Case Study. Water Air Soil Pollut 185, 79–93 (2007). https://doi.org/10.1007/s11270-007-9432-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9432-y

Keywords

Navigation