Phytoremediation Technology: Hyper-accumulation Metals in Plants

Abstract

This paper reviews key aspects of phytoremediation technology and the biological mechanisms underlying phytoremediation. Current knowledge regarding the application of phytoremediation in alleviating heavy metal toxicity is summarized highlighting the relative merits of different options. The results reveal a cutting edge application of emerging strategies and technologies to problems of heavy metals in soil. Progress in phytoremediation is hindered by a lack of understanding of complex interactions in the rhizosphere and plant based interactions which allow metal translocation and accumulation in plants. The evolution of physiological and molecular mechanisms of phytoremediation, together with recently-developed biological and engineering strategies, has helped to improve the performance of both heavy metal phytoextraction and phytostabilization. The results reveal that phytoremediation includes a variety of remediation techniques which include many treatment strategies leading to contaminant degradation, removal (through accumulation or dissipation), or immobilization. For each of these processes, we review what is known for metal pollutants, gaps in knowledge, and the practical implications for phytoremediation strategies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abia, A. A., Horsfall, M., & Didi, O. (2003). The use of chemically modified and unmodified cassava waste for the removal of Cd, Cu and Zn ions from aqueous solution. Bioresource Technology, 90, 345–348.

    CAS  Article  Google Scholar 

  2. Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121–142.

    CAS  Article  Google Scholar 

  3. Albasel, N., & Cottenie, A. (1985). Heavy metal contamination near major highways, industrial and urban areas in Belgium grassland. Water, Air and Soil Pollution, 24, 103–109.

    CAS  Article  Google Scholar 

  4. Al-Chalabi, A. S., & Hawker, D. (2000). Distribution of vehicular lead in roadside soils of major roads of Brisbane, Australia. Water, Air and Soil Pollution, 118, 299–310.

    CAS  Article  Google Scholar 

  5. Alloway, B. J. (1995). Soil processes and the behavior of metals. In: Alloway B. J. (Ed), Heavy metals in soils (pp. 38–57). London: Blackie.

    Google Scholar 

  6. Alkorta, I., Herna´ndez-Allica, J., Becerril, J. M., Amezaga, I., Albizu, I., & Garbisu, C. (2004). Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Reviews in Environmental Science and Bio/Technology, 3, 71–90.

    CAS  Article  Google Scholar 

  7. Atkinson, R., Aschmann, S. M., Hasegawa, D., Eagle-Thompson, E. T., & Frankenberger, J. R. (1990). Kinetics of the atmospherically important reactions of dimethylselenide. Environmental Science and Technology, 24, 1326–1332.

    CAS  Article  Google Scholar 

  8. Azaizeh, H. A., Gowthaman, S., & Terry, N. (1997). Microbial selenium volatilization in rhizosphere and bulk soils from a constructed wetland. Journal of Environmental Quality, 26(3), 666–672.

    CAS  Google Scholar 

  9. Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyper accumulate metallic elements – Review of their distribution, ecology, and phytochemistry. Biorecovery, 1, 81–126.

    CAS  Google Scholar 

  10. Baker, A. J. M., Reeves, R. D., & McGrath, S. P. (1991). In situ decontamination of heavy metal polluted soils using crops of metal accumulating plants – A feasibility study. In R. E. Hinchee & R. F. Olfenbuttel (Eds.), In-situ bioremediation (pp. 539–544). Stoneham, M. A: Butterworth-Heinemann.

    Google Scholar 

  11. Baker, A. J. M., & Walker, P. L. (1989). Ecophysiology of metal uptake by tolerant plants. In A. J. Shaw (Ed.), Heavy metal tolerance in plants: Evolutionary aspects (pp. 155–177). Boca Raton, FL: CRC.

    Google Scholar 

  12. Banuelos, G. S., Cardon, G., Mackey, B., Ben-Asher, J., Wu, L. P., Beuselinck, P., et al. (1993). Boron and selenium removal in B-laden soils by four sprinkler irrigated plant species. Journal of Environmental Quality, 22(4), 786–797.

    CAS  Google Scholar 

  13. Basic, N., Keller, C., Fontanillas, P., Vittoz, P., Besnard, G., & Galland, N. (2006a). Cadmium hyperaccumulation and reproductive traits in natural Thlaspi caerulescens populations. Plant Biology, 8, 64–72.

    CAS  Article  Google Scholar 

  14. Basic, N., Salamin, N., Keller, C., Galland, N., & Besnard, G. (2006b). Cadmium hyperaccumulation and genetic differentiation of Thlaspi caerulescens populations. Biochemical Systematics and Ecology, 34(9), 667–677.

    CAS  Article  Google Scholar 

  15. Baudouin, C., Charveron, M., Tarrouse, R., & Gall, Y. (2002). Environmental pollutants and skin cancer. Cell Biology and Toxicology, 18, 341–348.

    CAS  Article  Google Scholar 

  16. Beath, O. A., Eppsom, H. F., & Gilbert, G. S. (1937). Selenium distribution in and seasonal variation of vegetation type occurring on seleniferous soils. Journal of the American Pharmaceutical Association, 26, 394–405.

    CAS  Google Scholar 

  17. Belimov, A. A., Hontzeas, N., Safronova, V. I., Demchinskaya, S. V., Piluzza G., Bullitta, S., et al. (2005). Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology & Biochemistry, 37, 241–250.

    CAS  Article  Google Scholar 

  18. Berti, W. R., & Cunningham, S. D. (2000). Phytostabilization of metals. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean-up the environment (pp. 71–88). New York: Wiley.

    Google Scholar 

  19. Bidwell S. D., Woodrow, I. E., Batianoff, G. N., & Sommer-Knudsen, J. (2002). Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Functional Plant Biology, 29, 899–905.

    CAS  Article  Google Scholar 

  20. Birch, G. E., & Scollen, A. (2003). Heavy metals in road dust, gully pots and parkland soils in a highly urbanised sub-catchment of Port Jackson, Australia. Australian Journal of Soil Research, 41, 1329–1342.

    CAS  Article  Google Scholar 

  21. Blaylock, M. J., & Huang, J. W. (2000). Phytoextraction of metals. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean-up the environment (pp. 53–70). New York: Wiley.

    Google Scholar 

  22. Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., et al. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science and Technology, 31(3), 860–865.

    Article  Google Scholar 

  23. Bolan, N. S., Adriano, D. C., & Naidu, R. (2003). Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system. Reviews of Environmental Contamination and Toxicology, 177, 1–44.

    CAS  Article  Google Scholar 

  24. Boonyapookana, B., Parkplan, P., Techapinyawat, S., DeLaune, R. D., & Jugsujinda, A. (2005). Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). Journal of Environmental Science and Health A, 40, 117–137.

    Article  CAS  Google Scholar 

  25. Boularbah, A., Schwartz, C., Bitton, G., Aboudrar, W., Ouhammou, A., & Morel, J. L. (2006). Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants. Chemosphere, 63(5), 811–817.

    CAS  Article  Google Scholar 

  26. Broadhurst, C. L., Chaney, R. L., Angle, J. S., Maugel, T. K., Erbe, E. F., & Murphy, C. A. (2004). Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes. Environmental Science & Technology, 38, 5797–5802.

    CAS  Article  Google Scholar 

  27. Brooks, R. R. (ed) (1998). Plants that hyperaccumulate heavy metals (p. 384). Wallingford: CAB International.

  28. Caille, N., Swanwick, S., Zhao, F. J., & McGrath, S. P. (2004). Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation. Environmental Pollution, 132, 113–120.

    CAS  Article  Google Scholar 

  29. Chandra Sekhar, K., Kamala, C. T., Chary, N. S., Balaram, V., & Garcia, G. (2005). Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils. Chemosphere, 58, 507–514.

    CAS  Article  Google Scholar 

  30. Chaney, R. L. (1983). Plant uptake of inorganic waste constitutes. In J. F. Parr, P. B. Marsh, & J. M. Kla (Eds.), Land treatment of hazardous wastes (pp. 50–76). Park Ridge, NJ: Noyes Data Corp.

    Google Scholar 

  31. Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Brewer, E. P., Angle, J. S., et al. (1997). Phytoremediation of soil metals. Current Opinion in Biotechnology, 8, 279–283.

    CAS  Article  Google Scholar 

  32. Chaudhry, T. M., Hayes, W. J., Khan, A. G., & Khoo, C. S. (1998). Phytoremediation – Focusing on accumulator plants that remediate metal-contaminated soils. Australasian Journal of Ecotoxicology, 4, 37–51.

    CAS  Google Scholar 

  33. Chen, Y. X., Wang, Y. P., Wu, W. X. Lin, Q., & Xue, S. G. (2006). Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator. Science of the Total Environment, 356(1–3), 247–255.

    CAS  Article  Google Scholar 

  34. Clemente, R., Almela, C., & Bernal, P. M. (2006). A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste. Environmental Pollution, 143(3), 397–406.

    CAS  Article  Google Scholar 

  35. Clemente, R., Walker, J. D., Roig, A., & Bernal, P. M. (2003). Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalc´ollar (Spain). Biodegradation, 14, 199–205.

    CAS  Article  Google Scholar 

  36. Comis, D. (1996). Green remediation: Using plants to clean the soil. Journal of Soil and Water Conservation, 51(3), 184–187.

    Google Scholar 

  37. Conesa, M. H., Faz, A., & Arnaldos, R. (2006). Initial studies for the phytostabilization of a mine tailing from the Cartagena–La Union Mining District (SE Spain). Chemosphere, 66(1), 38–44.

    Article  CAS  Google Scholar 

  38. Cooper, E. M., Sims, J. T., Cunningham, S. D., Huang, J. W., & Berti, W. R. (1999). Chelate-assisted phytoextraction of lead from contaminated soil. Journal of Environmental Quality, 28, 1709–1719.

    CAS  Google Scholar 

  39. Cunningham, S. D., & Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110(3), 715–719.

    CAS  Google Scholar 

  40. Cunningham, S. D., Shann, J. R., Crowley, D. E., & Anderson, T. A. (1997). Phytoremediation of contaminated water and soil. In E. L. Kruger, T. A. Anderson, & J. R. Coats (Eds.), Phytoremediation of soil and water contaminants. ACS Symposium series 664 (pp. 2–19). Washington, DC: American Chemical Society.

    Google Scholar 

  41. Davis, T. A., Volesky, B., & Vieira, R. H. S. F. (2000). Sargassum seaweed as biosorbent for heavy metals. Water Research, 34, 4270–4278.

    CAS  Article  Google Scholar 

  42. Desouza, M. P., Pilon-Smits, E. A. H., & Terry, N. (2000). The physiology and biochemistry of selenium volatilization by plants. In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean-up the environment (pp. 171–190). New York: Wiley.

    Google Scholar 

  43. Dierberg, F. E., Débuts, T. A., & Goulet, J. R. N. A. (1987). Removal of copper and lead using a thin-film technique. In K. R. Reddy & W. H. Smith (Eds.), Aquatic plants for water treatment and resource recovery (pp. 497–504). Magnolia.

  44. Dushenkov, S., & Kapulnik, Y. (2000). Phytofilitration of metals. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals – Using plants to clean-up the environment (pp. 89–106). New York: Wiley.

    Google Scholar 

  45. Dushenkov, V., Kumar, P. B. A. N., Motto, H., & Raskin, I. (1995). Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environmental Science and Technology, 29, 1239–1245.

    CAS  Article  Google Scholar 

  46. Dushenkov, S., Vasudev, D., Kapulnik, Y., Gleba, D., Fleisher, D., Ting, K. C., et al. (1997a). Removal of uranium from water using terrestrial plants. Environmental Science and Technology, 31(12), 3468–3474.

    CAS  Article  Google Scholar 

  47. Dushenkov, S., Vasudev, D., Kapulnik, Y., Gleba, D., Fleisher, D., Ting, K. C., et al. (1997b). Phytoremediation: A novel approach to an old problem. In D. L. Wise (Ed.), Global environmental biotechnology (pp. 563–572). Amsterdam: Elsevier.

    Google Scholar 

  48. Eapen, S., & D’Souza, S. F. (2005). Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnology Advances, 23, 97–114.

    CAS  Article  Google Scholar 

  49. Ebbs, S. D., Lasat, M. M., Brandy, D. J., Cornish, J., Gordon, R., & Kochian, L. V. (1997). Heavy metals in the environment: Phytoextraction of cadmium and zinc from a contaminated soil. Journal of Environmental Quality, 26, 1424–1430.

    CAS  Google Scholar 

  50. Elless, P. M., Poynton, Y. C., Williams, A. C., Doyle, P. M., Lopez, C. A., Sokkary, A. D., et al. (2005). Pilot-scale demonstration of phytofiltration for drinking arsenic in New Mexico drinking water. Water Research, 39(16), 3863–3872.

    CAS  Article  Google Scholar 

  51. Ensley, B. D. (2000). Rationale for use of phytoremediation. In I. Raskin, & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean- up the environment (pp. 3–12). New York: Wiley.

    Google Scholar 

  52. Entry, J. A., Watrud, L. S., & Reeves, M. (1999). Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi. Environmental Pollution, 104, 449–457.

    CAS  Article  Google Scholar 

  53. Evangelou, M. W. H., Ebel, M., & Schaeffer, A. (2006). Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere, 63(6), 996–1004.

    CAS  Article  Google Scholar 

  54. Evans, C. S., Asher, C., & Johnson, C. M. (1968). Isolation of dimethyl diselenide and other volatile selenium compounds from Astragalus racemosus (Pursh.) Aust. Journal of Biological Sciences, 21, 13–20.

    CAS  Google Scholar 

  55. Fakayode, S. O., & Olu-Owolabi, B. I. (2003). Heavy metal contamination of roadside topsoil in Osogbo, Nigeria: Its relationship to traffic density and proximity to highways. Environmental Geology, 44(2), 150–157.

    CAS  Google Scholar 

  56. Fatoki, O. S. (1996). Trace zinc and copper concentration in roadside surface soils and vegetation: A measurement of local atmospheric pollution in Alice, South Africa. Environmental Interpretation, 22, 759–762.

    CAS  Google Scholar 

  57. Flathman, P. E., & Lanza, G. R. (1998). Phytoremediation: Current views on an emerging green technology. Journal of Soil Contamination, 7(4), 415–432.

    Article  Google Scholar 

  58. Frérot, H., Lefèbvre, C., Gruber, W., Collin, C., Dos Santos, A., & Escarre, J. (2006). Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant and Soil, 282, 53–65.

    Article  CAS  Google Scholar 

  59. Garbisu, C., & Alkorta, I. (2001). Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77, 229–236.

    CAS  Article  Google Scholar 

  60. García, R., & Millán, E. (1998). Assessment of Cd, Pb and Zn contamination in roadside soils and grasses from Gipuzkoa (Spain). Chemosphere, 37, 1615–1625.

    Article  Google Scholar 

  61. Gardea-Torresdey, J. L., de la Rosa, G., & Peralta-Videa, J. R. (2004). Use of phytofiltration technologies in the removal of heavy metals: A review. Pure and Applied Chemistry, 76(4), 801–813.

    CAS  Google Scholar 

  62. Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of its by-products. Applied Ecology and Environmental Research, 3(1), 1–18.

    Google Scholar 

  63. Glass, D. J. (1999). U.S. and international markets for phytoremediation, 1999–2000 (p. 266). Needham, MA: D. Glass Associates.

    Google Scholar 

  64. Gorjanovic, S., Suznjevic, D., Beljanski, M., & Hranisavljevic, J. (2006). Barley lipid-transfer protein as heavy metal scavenger. Environmental Chemistry Letters, 2(3), 113–116.

    Article  CAS  Google Scholar 

  65. Gulson, B. L., Tiller, K. G., Mizon, K. J., & Merry, R. H. (1981). Use of lead isotopes in soils to identify the source of lead contamination near Adelaide, South Australia. American Chemical Society, 15(6), 691–696.

    CAS  Google Scholar 

  66. Hammer, D., Keller, C., McLaughlin, M. J., & Hamon, R. E. (2006). Fixation of metals in soil constituents and potential remobilization by hyperaccumulating and non-hyperaccumulating plants: Results from an isotopic dilution study. Environmental Pollution, 143(3), 407–415.

    CAS  Article  Google Scholar 

  67. Han, F. X., Banin, A., Kingery, W. L., Triplrtt, G. B., Zhou, L. X., Zheng, S. J., et al. (2003). New approach to studies of heavy metal redistribution in soil. Advances in Environmental Research, 8, 113–120.

    CAS  Article  Google Scholar 

  68. Heaton, A. C. P., Rugh, C. L., Wang, N., & Meagher, R. B. (1998). Phytoremediation of mercury- and methyl mercury-polluted soils using genetically engineered plants. Journal of Soil Contamination, 74, 497–510.

    Article  Google Scholar 

  69. Hernandez-Allica, J., Becerril, J. M., Zarate, O., & Garbisu, C. (2006). Assessment of the efficiency of a metal phytoextraction process with biological indicators of soil health. Plant and Soil, 281(1–2), 147–158.

    CAS  Article  Google Scholar 

  70. Ho, Y. B., & Tai, K. M. (1988). Elevated levels of lead and other metals in roadside soil and grass and their use to monitor aerial metal depositions in Hong Kong. Environmental Pollution, 49(1), 37–51.

    CAS  Article  Google Scholar 

  71. Horsfall, M., & Abia, A. A. (2003). Sorption of cadmium (II) and zinc (II) ions from aqueous solutions by cassava waste biomass (Manihot sculenta Cranz). Water Research, 37, 4913–4923.

    CAS  Article  Google Scholar 

  72. Huang, J. W., Chen, J., Berti, W. R., & Cunningham, S. D. (1997). Phytoremediation of lead contaminated soil: Role of synthetic chelates in lead phytoextraction. Environmental Science and Technology, 31(3), 800–805.

    CAS  Article  Google Scholar 

  73. Hughes, J. B., Shanks, J., Vanderford, M., Lauritzen, J., & Bhadra, R. (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Environmental Science & Technology, 31, 266–271.

    CAS  Article  Google Scholar 

  74. Jaffre, T., Brooks, R. R., Lee, J., & Reeves, R. D. (1976). Sebertia acumip. A nickel-accumulating plant from New Caledonia. Science, 193, 579–580.

    CAS  Article  Google Scholar 

  75. Jain, S. K., Vasudevan, P., Jha, N. K. (1989). Removal of some heavy metals from polluted water by aquatic plants: Studies on duckweed and water velvet. Biological Wastes, 28(2), 115–126.

    CAS  Article  Google Scholar 

  76. Kay, S. H., Haller, W. T., & Garrard, L. A. (1984). Effect of heavy metals on water hyacinths [Eichhornia crassipes (Mart.) Solms]. Aquatic Toxicology, 5, 117–128.

    CAS  Article  Google Scholar 

  77. Keller, C., Diallo, S., Cosio, C., Basic, N., & Galland, N. (2006). Cadmium tolerance and hyperaccumulation by Thlaspi caerulescens populations grown in hydroponics are related to plant uptake characteristics in the field. Functional Plant Biology, 33(7), 673–684.

    CAS  Article  Google Scholar 

  78. Knasmuller, S., Gottmann, E., Steinkellner, H., Fomin, A., Pickl, C., Paschke, A., et al. (1998). Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mutation Research, 420, 37–48.

    CAS  Google Scholar 

  79. Kobayashi, F., Asada, C., & Nakamura, Y. (2005). Phytoremediation of soil contaminated with heavy metals and recovery of valuable metals. Kagaku Kogaku Ronbunshu, 31(6), 476–480.

    CAS  Article  Google Scholar 

  80. Kubota, H., & Takenaka, C. (2003). Arabis gemmifera is a hyperaccumulator of Cd and Zn. International Journal of Phytoremediation, 5, 197–120.

    Article  Google Scholar 

  81. Kumar, P. B. A. N., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: The use of plants to remove heavy metals from soils. Environmental Science and Technology, 29(5), 1232–1238.

    CAS  Article  Google Scholar 

  82. Kuo, S., Jellum, E. J., & Baker, A. S. (1985). Effects of soil type, liming, and sludge application on zinc and cadmium availability to Swiss chard. Soil Science, 139, 122–130.

    CAS  Article  Google Scholar 

  83. Lasat, M. M. (2002). Phytoextraction of toxic metals – A review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.

    CAS  Google Scholar 

  84. Lasat, M. M., Fuhrmann, M., Ebbs, S. D., Cornish, J. E., & Kochian, L. V. (1998). Phytoremediation of a radio cesium contaminated soil: evaluation of cesium-137 bioaccumulation in the shoots of three plant species. Journal of Environmental Quality, 27(1), 165–168.

    CAS  Google Scholar 

  85. Leblanc, M., Petit, D., Deram, A., Robinson, B., & Brooks, R. R. (1999). The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from southern France. Economic Geology, 94(1), 109–113.

    CAS  Google Scholar 

  86. LeDuc, D. L., Samie, M. A., Bayon, M. M., Wu, C. P., Reisinger, S. J., & Terry, N. (2006). Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environmental Pollution, 144(1), 70–76.

    CAS  Article  Google Scholar 

  87. Lewis, B. G., Johnson, C. M., & Delwiche, C. C. (1966). Release of volatile selenium compounds by plants: Collection procedures and preliminary observations. Journal of Agricultural and Food Chemistry, 14, 638–640.

    CAS  Article  Google Scholar 

  88. Li, Y. M., Chaney, R. L., Angle, J. S., & Baker, A. J. M. (2000). Phytoremediation of heavy metal contaminated soils. In D. L. Wise et al. (Eds.), Bioremediation of contaminated soils. New York: Marcel Dekker.

    Google Scholar 

  89. Li, X. D., & Thornton, I. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706.

    CAS  Article  Google Scholar 

  90. Liu, Y. G., Zhang, H. Z., Zeng, G. M., Huang, B. R., & Li, X. (2006). Heavy metal accumulation in plants on Mn mine tailings. Pedosphere, 16(1), 131–136.

    CAS  Article  Google Scholar 

  91. Lombi, E., Zhao, F. J., Dunham, S. J., & MacGrath, S. P. (2001a). Phytoremediation of heavy metal-contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction. Journal of Environmental Quality, 30, 1919–1926.

    CAS  Google Scholar 

  92. Lombi, E., Zhao, F. J., Dunham. S. J., & McGrath, S. P. (2001b). Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi geosingense. New Phytologist, 145, 11–20.

    Article  Google Scholar 

  93. Luo, C. L., Shen, Z. G., Li, X. D., & Baker, A. J. M. (2006). Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere, 63(10), 1773–1784.

    CAS  Article  Google Scholar 

  94. Mains, D., Craw, D., Rufaut, C. G., & Smith, C. M. S. (2006a). Phytostabilization of gold mine tailings, New Zealand. Part 1: Plant establishment in alkaline saline substrate. International Journal of Phytoremediation, 8(2), 131–147.

    CAS  Article  Google Scholar 

  95. Mains, D., Craw, D., Rufaut, C. G., & Smith, C. M. S. (2006b). Phytostabilization of gold mine tailings from New Zealand. Part 2: Experimental evaluation of arsenic mobilization during revegetation. International Journal of Phytoremediation, 8(2), 163–183.

    CAS  Article  Google Scholar 

  96. McEldowney, S., Hardman, D. J., & Waite, S. (1993). Treatment technologies. In S. McEldowney, D. J. Hardman, & S. Waite (Eds.), Pollution, ecology and biotreatment (pp. 48–58). Singapore: Longman Singapore Publishers Pvt. Ltd.

    Google Scholar 

  97. McGrath, S. P. (1998). Phytoextraction for soil remediation. In R. R. Brooks (Ed.), Plants that hyperaccumulate heavy metals: Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining (pp. 261–288). New York: CAB International.

    Google Scholar 

  98. McGrath, S. P., & Zhao, F. J. (2003). Phytoextraction of metals and metalloids. Current Opinion in Biotechnology, 14, 277–282.

    CAS  Article  Google Scholar 

  99. McGrath, S. P., Zhao, F. J., & Lombi, E. (2002). Phytoremediation of metals, metalloids, and radionuclides. Advances in Agronomy, 75, 1–56.

    CAS  Article  Google Scholar 

  100. McIntyre, T. (2003). Phytoremediation of heavy metals from soils. Advances in Biochemical Engineering, Biotechnology, 78, 97–123.

    CAS  Google Scholar 

  101. Meagher, R. B. (2000). Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biology, 3, 153–162.

    CAS  Article  Google Scholar 

  102. Mkandawire, M., & Dudel, E. G. (2005). Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Science of the Total Environment, 336, 81–89.

    CAS  Article  Google Scholar 

  103. Mo, S. C., Choi, D. S., & Robinson, J. W. (1989). Uptake of mercury from aqueous solution by duckweed: The effect of pH, copper, and humic acid. Journal of Environmental Health, 24, 135–146.

    Google Scholar 

  104. Navari-Izzo, F., & Quartacci, M. F. (2001). Phytoremediation of metals – Tolerance mechanisms against oxidative stress. Minerva Biotecnologica, 13, 73–83.

    Google Scholar 

  105. Nouairi, I., Ben Ammar, W., Ben Youssef, N., Daoud, D. B., Ghorbal, M. H., & Zarrouk, M. (2006). Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Science, 170(3), 511–519.

    CAS  Article  Google Scholar 

  106. O’Connor, C. S., Leppi, N. W., Edwards, R., & Sunderland, G. (2003). The combined use of electrokinetic remediation and phytoremediation to decontaminate metal-polluted soils: A laboratory-scale feasibility study. Environmental Monitoring and Assessment, 84, 141–158.

    CAS  Article  Google Scholar 

  107. Odjegba, V. J., & Fasidi, I. O. (2004). Accumulation of trace elements by Pistia stratiotes: Implications for phytoremediation. Ecotoxicology, 13, 637–646.

    CAS  Article  Google Scholar 

  108. Parker, D. R., Feist, L. J., Varvel, T. W., Thomason, D. N., & Zhang, Y. Q. (2003). Selenium phytoremediation potential of Stanleya pinnata. Plant Soil, 249, 157–165.

    CAS  Article  Google Scholar 

  109. Pendergrass, A., & Butcher, D. J. (2006). Uptake of lead and arsenic in food plants grown in contaminated soil from Barber Orchard, NC. Microchemical Journal, 83(1), 14–16.

    CAS  Article  Google Scholar 

  110. Pilon-Smits, E. A. H. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    CAS  Article  Google Scholar 

  111. Pilon-Smits, E. A. H., Desouza, M. P., Hong, G., Amini, A., Bravo, R. C., Payabyab, S. T., et al. (1999). Selenium volatilization and accumulation by twenty aquatic plant species. Journal of Environmental Quality, 28(3), 1011–1017.

    CAS  Google Scholar 

  112. Pitchel, J., Kuroiwa, K., & Sawyer, H. T. (1999). Distribution of Pb, Cd and Ba in soils and plants of two contaminated soils. Environmental Pollution, 110, 171–178.

    Google Scholar 

  113. Prasad, M. N. V, & Freitas, H. (2003). Metal hyperaccumulation in plants – Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6, 275–321.

    Google Scholar 

  114. Pugh, R. E., Dick, D. G., & Fredeen, A. L. (2002). Heavy metal (Pb, Zn, Cd, Fe and Cu) contents of plant foliage near the Anvil range lead/zinc mine, Faro, Yukon Territory. Ecotoxicology and Environmental Safety, 52, 273–279.

    CAS  Article  Google Scholar 

  115. Quartacci, M. F., Argilla, A., Baker, A. J. M., & Navari-Izzo, F. (2006). Phytoextraction of metals from a multiple contaminated soil by Indian mustard. Chemosphere, 63(6), 918–925.

    CAS  Article  Google Scholar 

  116. Raskin, I., Smith, R. D., & Salt, D. E. (1997). Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 8, 221–226.

    CAS  Article  Google Scholar 

  117. Reeves, R. D., & Brooks, R. R. (1983). Hyperaccumulation of lead and zinc by two metallophytes from a mining area of Central Europe. Environmental Pollution Series A, 31, 277–287.

    CAS  Article  Google Scholar 

  118. Rizzi, L., Petruzzelli, G., Poggio, G., & Vigna, G. (2004). Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere, 57(9), 1039–1046.

    CAS  Article  Google Scholar 

  119. Robinson, B. H., Brooks, R. R., Howes, A. W., Kirkman, J. H., & Gregg, P. E. H. (1997). The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. Journal of Geochemical Exploration, 60, 115–126.

    CAS  Article  Google Scholar 

  120. Sagiroglu, A., Sasmaz, A, & Sen, O. (2006). Hyperaccumulator plants of the Keban mining district and their possible impact on the environment. Polish Journal of Environmental Studies, 15(2), 317–325.

    CAS  Google Scholar 

  121. Salt, D. E., Blaylock, M., Kumar, P. B. A. N., Dushenkov, V., Ensley, B. D., Chet, L., et al. (1995). Phyto-remediation: a novel strategy for the removal of toxic metals from the environment using plants. Biogeochemistry, 13, 468–474.

    CAS  Google Scholar 

  122. Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 643–668.

    CAS  Article  Google Scholar 

  123. Sánchez Martín, M. J., Sánchez Camazano, M., & Lorenzo, L. F. (2000). Cadmium and lead contents in suburban and urban soils from two medium-sized cities of Spain: Influence of traffic intensity. Bulletin of Environmental Contamination and Toxicology, 64, 250–257.

    Article  Google Scholar 

  124. Santos, F. S., Hernández-Allica, J., Becerril, J. M., Amaral-Sobrinho, N., Mazur, N., & Garbisu, C. (2006). Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere, 65(1), 43–50.

    CAS  Article  Google Scholar 

  125. Schnoor, J. L. (2000). Phytostabilization of metals using hybrid poplar trees. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean-up the environment (pp. 133–150). New York: Wiley.

    Google Scholar 

  126. Schwartz, C., Echevarria, G., & Morel, J. L. (2003). Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil, 24, 27–35.

    Article  Google Scholar 

  127. Sekhar, K. C., Kamala, C. T., Chary, N. S., Sastry, A. R. K., Rao, T. N., & Vairamani, M. (2004). Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant biomass. Journal of Hazardous Materials, 108, 111–117.

    CAS  Article  Google Scholar 

  128. Sharma, N. C., Gardea-Torresdey, J. L., Parsons, J., & Sahi, S. V. (2004). Chemical speciation and cellular deposition of lead in Sesbania drummondii. Environmental Toxicology and Chemistry, 23, 2068–2073.

    CAS  Article  Google Scholar 

  129. Sheng, X. F., & Xia, J. J. (2006). Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere, 64(6), 1036–1042.

    CAS  Article  Google Scholar 

  130. Singh, O. V., Labana, S., Pandey, G., Budhiraja, R., & Jain, R. K. (2003). Phytoremediation: an overview of metallicion decontamination from soil. Applied Microbiology and Biotechnology, 61, 405–412.

    CAS  Google Scholar 

  131. Smith, R. A. H., & Bradshaw, A. D. (1992). Stabilization of toxic mine wastes by the use of tolerant plant populations. Transactions of the Institution of Mining and Metallurgy, 81, A230–A237.

    Google Scholar 

  132. Smolders, E., & Degryse, F. (2002). Fate and effect of zinc from tire debris in soil. Environmental Science and Technology, 36, 3706–3710.

    CAS  Article  Google Scholar 

  133. Stoltz, E. (2004). Phytostabilisation:use of wet plants to treat mine tailings. Doctoral thesis, Department of Botany, Stockholm University.

  134. Stoltz, E., & Greger, M. (2002). Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 47(3), 271–280.

    CAS  Article  Google Scholar 

  135. Suresh, B., & Ravishankar, G. A. (2004). Phytoremediation – A novel and promising approach for environmental clean-up. Critical Reviews in Biotechnology, 24, 97–124.

    CAS  Article  Google Scholar 

  136. Suszcynsky, E. M., & Shann, J. R. (1995). Phytotoxicity and accumulation of mercury subjected to different exposure routes. Environmental Toxicology and Chemistry, 14, 61–67.

    CAS  Article  Google Scholar 

  137. Sutherland, R. A., Day, J. P., & Bussen, J. O. (2003). Lead concentrations, isotope ratios and source apportionment in road deposited sediments, Honolulu, Oahu, Hawaii. Water, Air and Soil Pollution, 142, 165–186.

    CAS  Article  Google Scholar 

  138. Swaileh, K. M., Hussen, R. H., & Abu-Elhaj, S. (2004). Assessment of heavy metal contamination in road side surface soil and vegetation from the West Bank. Archives of Environmental Contamination and Toxicology, 47, 23–30.

    CAS  Article  Google Scholar 

  139. Tandy, S., Schulin, R., & Nowack, B. (2006). The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere, 62(9), 1454–1463.

    CAS  Article  Google Scholar 

  140. Terry, N., Carlson, C., Raab, T. K., & Zayed, A. (1992). Rates of selenium volatilization among crop species. Journal of Environmental Quality, 21, 341–344.

    CAS  Google Scholar 

  141. Thangavel, P., & Subhuram, C. V. (2004). Phytoextraction – Role of hyper accumulators in metal contaminated soils. Proceedings of the Indian National Science Academy. Part B, 70(1), 109–130.

    CAS  Google Scholar 

  142. Tian, J. L., Zhu, H. T., Yang, Y. A., & He, Y. K. (2004). Organic mercury tolerance, absorption and transformation in Spartina plants. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao (Journal of Plant Physiology and Molecular Biology), 30, 577–582.

    CAS  Google Scholar 

  143. Tordoff, G. M., Baker, A. J. M., & Willis, A. J. (2000). Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere, 41(1–2), 219–228.

    CAS  Article  Google Scholar 

  144. Turer, D., Maynard, J. B., & Sansalone, J. J. (2001). Heavy metal contamination in soils of urban highways: Comparison between runoff and soil concentrations at Cincinnati, Ohio. Water, Air, and Soil Pollution, 132, 293–314.

    CAS  Article  Google Scholar 

  145. Utsunamyia, T. (1980). Japanese patent application no. 55-72959.

  146. Viard, B., Pihan, F., Promeyrat, S., & Pihan, J. C. (2004). Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: bioaccumulation in soil, Graminaceae and land snails. Chemosphere, 55(10), 1349–1359

    CAS  Article  Google Scholar 

  147. Viklander, M. (1998). Particle size distribution and metal content in street sediments. Journal of Environmental Engineering, 124, 761–766.

    CAS  Article  Google Scholar 

  148. Wang, A. S., Angle, J. S., Chaney, R. L., Delorme, T. A., & Reeves, R. D. (2006). Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant and Soil, 281(1–2), 325–337.

    CAS  Article  Google Scholar 

  149. Wang, J., Zhao, F., Meharg, A. A., Raab, A., Feldmann, J., & McGrath, P. S. (2002). Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiology, 130, 1552–1561.

    CAS  Article  Google Scholar 

  150. Watanabe, M. E. (1997). Phyto-remediation on the brink of commercialization. Environmental Science & Technology, 31, 182–186.

    Article  Google Scholar 

  151. Wei, S. H., Zhou, Q. X., Wang, X., Cao, W., Ren, L. P., & Song, Y. F. (2004). Potential of weed species applied to remediation of soils contaminated with heavy metals. Journal of Environmental Science- China, 16, 868–873.

    Google Scholar 

  152. Wenzel, W. W., Adriano, D. C., Salt, D., & Smith, R. (1999). Phytoremediation: A plant–microbe-based remediation system. In SSSA (Ed.), Bioremediation of Contaminated Soils (pp. 457–508). Madison, WI, USA: Agronomy Monograph no. 37, SSSA.

  153. WHO (1997). Health and environment in sustainable development. Geneva: WHO

    Google Scholar 

  154. Williamson, A., & Johnson, M. S. (1981). Reclamation of metalliferous mine wastes. In N. W. Lepp (Ed.), Effect of heavy metal pollution on plants, vol. 2 (pp. 185–212). Barking, Essex, UK: Applied Science Publishers.

    Google Scholar 

  155. Williams, A. C., Nascimento, W., Amarasiriwardena, D., & Xing, B. (2006). Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environmental Pollution, 140(1), 114–123.

    Article  CAS  Google Scholar 

  156. Wu, J., Hsu, F. C., & Cuningham, S. D. (1999). Chelate assisted Pb phytoextraction: Pb availability, uptake, and translocation constraints. Environmental Science & Technology, 33(11), 1898–1904.

    CAS  Article  Google Scholar 

  157. Xiong, Y. H., Yang, X. E., Ye, Z. Q., & He, Z. L. (2004). Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 39, 2925–2940.

    CAS  Article  Google Scholar 

  158. Xue, S. G., Chen, Y. X., Reeves, R. D., Baker, A. J., Lin, Q., & Fernando, D. R. (2004). Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environmental Pollution, 131, 393–399.

    CAS  Article  Google Scholar 

  159. Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of The Total Environment, 368(2–3), 456–464.

    CAS  Article  Google Scholar 

  160. Zaccheo, P., Crippa, L., & Pasta, V. D. (2006). Ammonium nutrition as a strategy for cadmium mobilisation in the rhizosphere of sunflower. Plant And Soil, 283(1–2), 43–56.

    CAS  Article  Google Scholar 

  161. Zhu, Y. L., Zayed, A. M., Quian, J. H., De Souza, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. Journal of Environmental Quality, 28, 339–344.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Loretta Y. Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Padmavathiamma, P.K., Li, L.Y. Phytoremediation Technology: Hyper-accumulation Metals in Plants. Water Air Soil Pollut 184, 105–126 (2007). https://doi.org/10.1007/s11270-007-9401-5

Download citation

Keywords

  • Metals
  • Phytoremediation
  • Pollution
  • Hyper accumulation
  • De-contamination
  • Excluders
  • Chelation