Skip to main content
Log in

Ambient Levels and Sources of Lower Carbonyls at Montelibretti, Rome (Italy)

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Concentration levels of 11 lower carbonyls were studied at Montelibretti, a semi-rural area near Rome, Italy, over July–September 2005 and February 2006. In both periods the most abundant carbonyls were acetone and formaldehyde, followed by methylglyoxal, acetaldehyde and hexanal. Monthly variation was apparent with maximum values observed in July, when levels at least a factor two higher compared to the successive months were observed. In summer all carbonyls except acetone were reasonably well correlated among themselves and with ozone. In addition very high formaldehyde/benzene concentration ratios were measured in the summer months compared to February. These findings indicated that photochemical reactions should be the major source of carbonyls in summer. Ranking of carbonyls respect to ozone production potential emphasized the predominance of formaldehyde and methylglyoxal, followed at a distance by glyoxal and acetaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Atkinson, R. (1990). Gas-phase tropospheric chemistry of organic compounds: A review. Atmospheric Environment, 24A, 1–41.

    CAS  Google Scholar 

  • Atkinson, R. (2000). Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 34, 2063–2101.

    Article  CAS  Google Scholar 

  • Carlier, P., Hannachi, H., & Mouvier, G. (1986). The chemistry of carbonyl compounds in the atmosphere: A review. Atmospheric Environment, 20, 2079–2099.

    Article  CAS  Google Scholar 

  • Carter, W. P. L. (1994). Development of ozone reactivity scales for volatile organic compounds. Journal of Air and Waste Management Association, 44, 881–899.

    CAS  Google Scholar 

  • Chatfield, R. B., Gardner, E. P., & Calvert, J. G. (1987). Sources and sinks of acetone in the atmosphere: Behaviour of reactive hydrocarbons and a stable product. Journal of Geophysical Research, 92D, 4208–4216.

    Article  Google Scholar 

  • Christensen, C. S., Skov, H., Nielsen, T., & Lohse, C. (2000). Temporal variation of carbonyl compound concentrations at a semi-rural site in Denmark. Atmospheric Environment, 34, 287–296.

    Article  CAS  Google Scholar 

  • Ciccioli, P., Brancaleoni, E., Cecinato, A., Sparapani, R., & Frattoni, M. (1993). Dentification and determination of biogenic and anthropogenic volatile organic compounds in forest areas of Northern and Southern Europe and a remote site of Himalaya region by high-resolution gas chromatography-mass spectrometry. Journal of Chromatography, 643, 55–69.

    Article  CAS  Google Scholar 

  • Ciccioli, P., Cecinato, A., Brancaleoni, E., & Frattoni, M. (1992). Identification and quantitative evaluation of C4–C14 volatile organic compounds in some urban, suburban and forest sites in Italy. Fresenius Environmental Bulletin, 1, 73–78.

    CAS  Google Scholar 

  • Feng, Y., Wen, H., Chen, Y., Wang, X., Lü, H., Bi, X., et al. (2005). Ambient levels of carbonyl compounds and their sources in Guangzhou, China. Atmospheric Environment, 39, 1789–1800.

    Article  CAS  Google Scholar 

  • Goldstein, A. H., & Schade, G. W. (2000). Quantifying biogenic and anthropogenic contributions to acetone mixing ratios in a rural environment. Atmospheric Environment, 34, 4997–5006.

    Article  CAS  Google Scholar 

  • Grosjean, E., Grosjean, D., Fraser, M. P., & Cass, G. R. (1996). Air quality model evaluation data for organics. 2. C1–C14 carbonyls in Los Angeles air. Environmental Science and Technology, 30, 2687–2703.

    Article  CAS  Google Scholar 

  • Grosjean, D., Grosjean, E., & Gertler, A. W. (2001). On-road emissions of carbonyls from light-duty and heavy-duty vehicles. Environmental Science and Technology, 35, 45–53.

    Article  CAS  Google Scholar 

  • Grosjean, D., Grosjean, E., & Moreira, L. F. R. (2002). Speciated ambient carbonyls in Rio de Janeiro, Brazil. Environmental Science and Technology, 36, 1389–1395.

    Article  CAS  Google Scholar 

  • Grosjean, E., Rasmussen, R. A., & Grosjean, D. (1998). Ambient levels of gas phase pollutants in Porto Alegre, Brazil. Atmospheric Environment, 32, 3371–3379.

    Article  CAS  Google Scholar 

  • Hsieh, C.-C., Chang, K.-H., & Wang, L.-T. (1999). Ambient concentrations of biogenic volatile organic compounds in Southern Taiwan. Chemosphere, 39, 731–744.

    Article  CAS  Google Scholar 

  • Kalabokas, P., Bartzis, J. G., Ciccioli, P., Cieslik, S., Dlugi, R., Foster, P., et al. (1997). Ambient atmospheric trace gas concentrations and meteorological parameters during the first BEMA measuring campaign on May 1994 at Castelporziano, Italy. Atmospheric Environment, 31, 67–77.

    Article  CAS  Google Scholar 

  • Kean, A. J., Grosjean, E., Grosjean, D., & Harley, R. A. (2001). On-road measurement of carbonyls in California light-duty vehicle emissions. Environmental Science and Technology, 35, 4198–4204.

    Article  CAS  Google Scholar 

  • König, G., Brunda, M., Puxbaum, H., Hewitt, C. N., Duckham, S. C., & Rudolph, J. (1995). Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emission of selected Mid-European agricultural and natural plant species. Atmospheric Environment, 29, 861–874.

    Article  Google Scholar 

  • Müller, K. (1997). Determination of aldehydes and ketones in the atmosphere – A comparative long time study at an urban and a rural site in Eastern Germany. Chemosphere, 35, 2093–2106.

    Article  Google Scholar 

  • Possanzini, M., Di Palo, V., & Cecinato, A. (2002). Sources and photodecomposition of formaldehyde and acetaldehyde in Rome ambient air. Atmospheric Environment, 36, 3195–3201.

    Article  CAS  Google Scholar 

  • Possanzini, M., Di Palo, V., & Cecinato, A. (2003). Evaluation of lower carbonyls and photochemical oxidants by HPLC-UV and HRGC-MS. Atmospheric Environment, 37, 1309–1316.

    Article  CAS  Google Scholar 

  • Possanzini, M., Di Palo, V., Petricca, M., Fratarcangeli, R., & Brocco, D. (1996). Measurements of lower carbonyls in Rome ambient air. Atmospheric Environment, 30, 3757–3764.

    Article  CAS  Google Scholar 

  • Rappengluck, B., Fabian, P., Kalabokas, P., Viras, L. G., & Ziomas, I. C. (1998). Quasi-continuous measurements of non-methane hydrocarbons in the greater Athens area during Medcaphol-trace. Atmospheric Environment, 32, 2103–2121.

    Article  CAS  Google Scholar 

  • Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric chemistry and physics – from air pollution to climate change. New York: Wiley.

    Google Scholar 

  • Shepson, P. B., Hastie, D. R., Schiff, H. I., Polizzi, M., Bottenheim, J. W., Anlauf, K., et al. (1991). Atmospheric concentrations and temporal variations of C1–C3 carbonyl compounds at two rural sites in Central Ontario. Atmospheric Environment, 25A, 2001–2015.

    CAS  Google Scholar 

  • Singh, H. B., Kanakidou, M., Crutzen, P. J., & Jacob, D. J. (1995). High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere. Nature, 378, 50–54.

    Article  CAS  Google Scholar 

  • Spaulding, R. S., Schade, G. W., Goldstein A. H., & Charles, M. J. (2003). Characterization of secondary photo-oxidation products: Evidence for biogenic and anthropogenic sources. Journal of Geophysical Research, 108, 4247–4263.

    Article  CAS  Google Scholar 

  • Villanueva, I., Popp, C. J., & Martin, R. S. (2004). Biogenic emissions and ambient concentrations of hydrocarbons, carbonyl compounds and organic acids from ponderosa pine and cottonwood trees at rural and forested sites in Central New Mexico. Atmospheric Environment, 38, 249–260.

    Article  CAS  Google Scholar 

  • Viskari, E. L., Vartiainen, M., & Pasanen, P. (2000). Seasonal and diurnal variations in formaldehyde and acetaldehyde concentrations along a highway in Eastern Finland. Atmospheric Environment, 34, 917–923.

    Article  CAS  Google Scholar 

  • Volkamer, R., Molina, L. T., Molina, M. J., Shirley, T., & Brune, V. H. (2005). DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air. Geophysical Research Letters, 32, L08806, doi: 10.1029/2005GL022616.

    Article  CAS  Google Scholar 

  • Wang, D., Fuentes, J. D., Travers, D., Dann, T., & Connolly, T. (2005). Non-methane hydrocarbons and carbonyls in the Lower Fraser valley during Pacific 2001. Atmospheric Environment, 39, 5261–5272.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Cecinato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Possanzini, M., Tagliacozzo, G. & Cecinato, A. Ambient Levels and Sources of Lower Carbonyls at Montelibretti, Rome (Italy). Water Air Soil Pollut 183, 447–454 (2007). https://doi.org/10.1007/s11270-007-9393-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9393-1

Keywords

Navigation