Skip to main content
Log in

Determination of Solute Organic Concentration in Contaminated Soils Using a Chemical-equilibrium Soil Column System

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Groundwater risk assessment of contaminated soils implies determination of the solute concentration leaching out of the soil. Determination based on estimation techniques or simple experimental batch approach has proven inadequate. Two chemical equilibrium soil column leaching tests for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated using two soils with different content of organic carbon (foc of 1.5 and 6.5%, respectively). A quadruple blind test of the ER-V system using glass beads in stead of soil showed an acceptable recovery (65–85%) of all of the 11 VOCs tested. Only for the most volatile compound (heptane, KH∼80) an unacceptable recovery was found (9%). The contact time needed for obtaining chemical equilibrium was tested in the ER-H system by performing five test with different duration (1, 2, 4, 7 and 19 days) using the low organic carbon soil. Seven days of contact time appeared sufficient for achieving a solute equilibrium concentration. The repeatability of both test systems (evaluated by performing five identical tests) was considered acceptable (8–16% and 7–28% for the ER-V and ER-H system, respectively). Comparing determined solute concentration in both systems for volatile and hydrophobic chemicals with estimated concentrations using an Kow–Koc relation and determined total soil concentrations, large differences between measured and estimated solute concentrations were observed, especially for the hydrophobic chemicals (PAHs). This clearly illustrates the need for a reliable method to measure solute phase concentration of PAHs in contaminated soils. Overall a reliable and reproducable system for determining solute concentration of a wide range of organic compounds in contaminated soils has been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ER-V:

chemical Equilibrium Recirculation column test for Volatile organic chemicals

ER-H:

chemical Equilibrium Recirculation column test for Hydrophobic organic chemicals

PAH:

Poly Aromatic Hydrocarbons

VOC:

Volatile Organic Chemicals

HOC:

Hydrophobic Organic Chemicals

ID:

Inner Diameter

L/S:

Liquid-to-Solid

FS:

Filling Station

HA:

Harbour Area

KOW :

Octanol–Water partitioning coefficient

KOC :

soil Organic Carbon-water partitioning coefficient

fOC :

Fraction of soil Organic Carbon

KD :

soil–water partitioning coefficient

References

  • Abdul, A. S., Gibson, T. L., & Rai, D. N. (1987). Statistical correlations for predicting the partition coefficient for nonpolar organic contaminants between aquifer organic carbon and water. Hazardous Waste & Hazardous Materials, 4, 211–222.

    CAS  Google Scholar 

  • Accardi-Dey, A., & Gschwend, P. M. (2003). Reinterpreting literature sorption data considering both absorption into organic carbon and adsorption onto black carbon. Environmental Science & Technology, 37, 99–106.

    Article  CAS  Google Scholar 

  • Alexander, M. (1995). How toxic are toxic chemicals in soil? Environmental Science & Technology, 28, 2713–2717.

    Article  Google Scholar 

  • Bauw, D. H., de Wilde, P. G. M., Rood, G. A., & Albers, T. G. (1991). A standard leaching test, including solid phase extraction, for the determination of PAH leachability from waste materials. Chemosphere, 22, 713–722.

    Article  CAS  Google Scholar 

  • Bergendahl, J. (2005). Batch leaching tests: Colloid release and PAH leachability. Soil & Sediment Contamination, 14, 527–543.

    Article  CAS  Google Scholar 

  • Bouchard, D. C., Wood, A. L., Campbell, M. L., Nkedi-Kizza, P., & Rao, P. S. C. (1988). Sorption nonequilibrium during solute tranport. Journal of Contaminant Hydrology, 30, 157–178.

    Google Scholar 

  • Chin, Y.-P., Weber, W. J. Jr., & Eadie, B. J. (1990). Estimating the effects of dispersed organic polymers on the sorption of contaminants by natural solids. 2. Sorption in the presence of humic and other natural macromolecules. Environmental Science & Technology, 24, 837–842.

    Article  CAS  Google Scholar 

  • Comans, R. N. J., Roskam, G., Oosterhoff, A., Shor, L., Wahlström, M., Laine-Ylijoki, J., et al. (2001). Development of standard leaching tests for organic pollutants in soils, sediments and granular waste materials. Standard measurements and testing programme of the European Commission, Contract nr. SMT4-CT97-2160.

  • DIN 38404, Teil 4. (1984). Deutsche Industri Norm (German Industrial Standard). Deutsche einheitsverfahren zur wasser-, abwasser- und schlammuntersuchung; schlamm und sedimente (gruppe S), bestimmung der eluierbarkeit mit wasser (S4); nomenausschuß wasserwessen (Hrsg.). (In german).

  • DIN V 19736. (1998). Deutsche Industri Norm, Vornorm (German Industrial Standard, Draft) Ableitung von konzentrationen organischer stoffe im bodemwasser. Bodenbeschaffenheit. (In german).

  • Dyreborg, S., & Arvin, E. (1994). Creosote leaching from a contaminated saturated sand column. Environment & Technology, 15, 871–878.

    Article  CAS  Google Scholar 

  • EN 12457 part 1–4. (September 2002). Characterisation of waste – Leaching – Compliance test for leaching of granular material and sludges. CEN/TC 292. Characterisation of waste.

  • Enell, A., Reichenberg, F., Warfwinge, P., & Ewald, G. (2004). A column method for determination of leaching of polycyclic aromatic hydrocarbons from aged contaminated soil. Chemosphere, 54, 707–715.

    Google Scholar 

  • Gamst, J., Hansen, J. B., Kjeldsen, P., Hjelmar, O., Broholm, K., Hansen, N., et al. (2006). Leaching of organic contaminants from contaminated soils: Effects of using chemical equilibrium column and batch tests. Draft.

  • Gamst, J., Kjeldsen, P., Hansen, J. B., Broholm, K., & Christensen, T. H. (2003b). Leaching of PAH’s from soil: Comparison of two conceptually different column tests and a batch tests. In D. Halm & P. Grathwohl (Eds.), Proceedings of the 2nd international workshop on Groundwater Risk Assessment at Contaminated Sites (GRACOS) and Integrated Soil and Water Protection (SOWA). Tübingen, Germany, 20–21 March 2003, pp. 173–177. Tübingen: Institut und Museum für Geologie und Paläontologie der Universität Tübingen.

  • Gamst, J., Moldrup, P., Rolston, D. E., Olesen, T., & Scow, K. M. (2003a). Diffusion and adsorption–desorption of naphthalene: Comparison of half-cell diffusion and batch sorption experiments. Soil Science Society of America Journal, 66, 765–777.

    Article  Google Scholar 

  • Gamst, J., Olesen, T., De Jonge, H., Moldrup, P., & Rolston, D. E. (2001). Non-singularity of naphthalene sorption in soil: Observations and the two-compartment model. Soil Science Society of America Journal, 65, 1622–1633.

    Article  CAS  Google Scholar 

  • Grathwohl, P. (1998). Diffusion in natural porous media: Contaminant transport, sorption/desorption and dissolution kinetics. Boston: Kluwer.

    Google Scholar 

  • Hansen, J. B., Grøn, C., Hjelmar, O., Asmussen, O., Klem, S., Mizutani, S., et al. (2004). Leaching tests for non-volatile organic compounds – development and testing. Report for Nordtest 1643–03.

  • Kan, A. T., Fu, G., & Tomson, M. B. (1994). Adsorption/desorption hysteresis in organic pollutant and soil/sediment interaction. Environmental Science & Technology, 28, 859–867.

    Article  CAS  Google Scholar 

  • Karickhoff, S. W., Brown, D. S., & Scott, T. A. (1979). Sorption of hydrophobic pol-lutants on natural sediments. Water Research, 13, 241–248.

    Article  CAS  Google Scholar 

  • Kjeldsen, P., & Grundtvig, A. (1995). Leaching of organic compounds from industrial waste disposed of at an old municipal landfill. In T. H. Christensen, R. Cossu, & R. Stegmann (Eds.), Sardinia’95. Fifth international landfill symposium. S. Margherita di Pula, Cagliari, Italy 2.–6. October, Proceedings, Vol III:201–212. Cagliari, Italy: CISA-Environmental Sanitary Engineering Centre.

  • Knabner, P., Totsche, K. U., & Kögel-Knabner, I. (1996). The modeling of reactive solute transport with sorption to mobile hydrocarbons by natural organic matter in aquifer sediments. Environmental Science & Technology, 29, 807–817.

    Google Scholar 

  • Luthy, R. G., Aiken, G. R., Brusseau, M. L., Cunningham, S. D., Geswend, P. M., Pignatello, J. J., et al. (1997). Sequestration of hydrophobic organic contaminants by geosorbents. Environmental Science & Technology, 31, 3341–3347.

    Article  CAS  Google Scholar 

  • MacIntyre, W. G., Stauffer, T. B., & Antworth, C. P. (1991). A comparison of sorption coefficients determined by batch, column, and box methods on a low organic carbon aquifer material. Groundwater, 29, 908–913.

    CAS  Google Scholar 

  • Mackay, D., Shiu, W. Y., & Ma, K. C. (1992a). Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals: Monoaromatic hydrocarbons, chlorobenzenes, and PCB’s. Vol I. NY, USA: Lewis.

    Google Scholar 

  • Mackay, D., Shiu, W. Y., & Ma, K. C. (1992b). Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals: Polynuclear aromatic hydrocarbons, polychlorinated dioxins, and dibenzofurans. Vol II. NY, USA: Lewis.

    Google Scholar 

  • Maraqa, M. A. (2001). Effects of fundamental differences between batch and miscible displacement techniques on sorption distribution coefficient. Environmental Geology, 41, 219–228.

    Article  CAS  Google Scholar 

  • Maraqa, M. A., Zhao, X., Walace, R. B., & Voice, T. C. (1998). Retardation coefficients of nonionic organic compounds determined by batch and column techniques. Soil Science Society of America Journal, 62, 142–152.

    Article  CAS  Google Scholar 

  • Mcgroddy, S. E., & Farrington, J. W. (1995). Sediment porewater partitioning of polycyclic aromatic hydrocarbons in three cores from Boston harbor, Massachusetts. Environmental Science & Technology, 29, 1542–1550.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. In A. L. Page, et al. (Eds.), Methods of soil analysis: Part 2. Chemical and microbiological properties (pp. 539–579). ASA Monograph Number 9.

  • Nkedi-Kizza, P., Rao, P. S. C., & Hornsby, A. G. (1987). Influence of organic cosolvent on leaching of hydrophobic organic chemicals through soils. Environmental Science & Technology, 21, 1107–1111.

    Article  CAS  Google Scholar 

  • Pignatello, J. J., & Xing, B. (1996). Mechanisms of slow sorption of organic chemicals to natural particles. Environmental Science & Technology, 30, 1–11.

    Article  CAS  Google Scholar 

  • prCEN/TS 14405: Characterization of waste – Leaching behaviour tests – Up-flow percolation test (under specified conditions).

  • prCEN/TS 14429, Characterization of waste – Leaching behaviour tests – Influence of pH on leaching with initial acid/base addition.

  • Reemtsma, T., & Mehrtens, J. (1997). Determination of polycyclic aromatic hydrocarbon (PAH) leaching from contaminated soil by a column test with on-line solid phase extraction. Chemosphere, 35, 2491–2501.

    Article  CAS  Google Scholar 

  • Stroetmann, I., Kampfer, P., & Dott, W. (1994). Efficiency of different methods for sterilization of different soil types. Zentralblatt für Hygiene und Umweltmedizin, 195(2), 111–120.

    CAS  Google Scholar 

  • Uchrin, C. G., & Katz, J. (1991). Transport of BTX mixture in a groundwater aquifer material. Bulletin of Environmental Contamination and Toxicology, 46, 534–541.

    Article  CAS  Google Scholar 

  • US EPA. (1992). Toxicity characteristic leaching procedure. Method 1311.

  • Wahlstrom, M. (1996). Nordic recommendation for leaching tests for granular waste materials. Science of the Total Environment, 178, 95–102.

    Article  Google Scholar 

  • Weiß, H. (1998). Säülenversuche zur gefahrenbeurteilung für das grundwasser an PAK-kontaminierten standorten. TGA, Nr. 45. Ph.D. dissertation from Universität Tübingen. (in German with English abstract).

  • Young, D. F., & Ball, W. P. (1995). Estimating diffusion coefficients in low-permeability porous media using a macropore column. Environmental Science & Technology, 32, 2578–2584.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Centre for Waste Research (C-RES) and “The Programme for Technology Development of Soil and Groundwater Contamination,” Danish EPA. We thank Denny Vilholt, Bent Skov, Karina Henriksen and Bolette Nygaard, Institute of Environment & Resources, DTU for technical assistance and Jette Bjerre Hansen, Ole Hjelmar, Water & Environment, DHI, and Povl O. Rasmussen, Danish EPA, for helpful discussions of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kjeldsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamst, J., Kjeldsen, P. & Christensen, T.H. Determination of Solute Organic Concentration in Contaminated Soils Using a Chemical-equilibrium Soil Column System. Water Air Soil Pollut 183, 377–389 (2007). https://doi.org/10.1007/s11270-007-9386-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9386-0

Keywords

Navigation