Skip to main content
Log in

Are Indicators for Critical Load Exceedance Related to Forest Condition?

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the suitability of the (Ca + Mg + K)/Al and the Ca/Al ratios in soil solution as chemical criteria for forest condition in critical load calculations for forest ecosystems. The tree species Norway spruce, Sitka spruce and beech were studied in an area with high deposition of sea salt and nitrogen in the south-western part of Jutland, Denmark. Throughfall and soil water were collected monthly and analysed for pH, NO3-N, NH4-N, K, Ca, Mg, DOC and Altot. Organic Al was estimated using DOC concentrations. Increment and defoliation were determined annually, and foliar element concentrations were determined every other year. The throughfall deposition was highest in the Sitka spruce stand (maximum of 40 kg N ha−1yr−1) and lowest in the beech stand (maximum of 11 kg N ha−1yr−1). The Sitka spruce stand leached on average 12 kg N ha−1yr−1 during the period 1988–1997 and leaching increased throughout the period. Only small amounts of N were leached from the Norway spruce stand whereas almost no N was leached from the beech stand. For all tree species, both (Ca + Mg + K)/Al and Ca/Al ratios decreased in soil solution at 90 cm depth between 1989 and 1999, which was mainly caused by a decrease in concentrations of base cations. The toxic inorganic Al species were by far the most abundant Al species at 90 cm depth. At the end of the measurement period, the (Ca + Mg + K)/Al ratio was approximately 1 for all species while the Ca/Al ratio was approximately 0.2. The lack of a trend in the increment rates, a decrease in defoliation as well as sufficient levels of Mg and Ca in foliage suggested an unchanged or even slightly improved health condition, despite the decreasing and very low (Ca + Mg + K)/Al and Ca/Al ratios. The suitability of these soil solution element ratios is questioned as the chemical criteria for soil acidification under field conditions in areas with elevated deposition rates of sea salts, in particular Mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aber, J. D., McDowell, W., Nadelhoffer, K. J., Magill, A., Berntson, G., Kamakea, M., et al. (1998). Nitrogen saturation in temperate forest ecosystems. BioScience, 48, 921–934.

    Article  Google Scholar 

  • Aber, J. D., Nadelhoffer, K. J., Steudler, P., & Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. BioScience, 39, 378–386.

    Article  Google Scholar 

  • Aherne, J., Farrell, E. P., Hall, J., Reynolds, B., & Hornung, M. (2001). Using multiple chemical criteria for CL of acidity in maritime regions. Water, Air & Soil Pollution. Focus, 1, 75–90.

    Article  CAS  Google Scholar 

  • Arp, P. A., & Strucel, I. (1989). Water uptake by black spruce seedlings from rooting media (solution, sand, peat) treated with inorganic and oxalated aluminium. Water, Air and Soil Pollution, 44, 75–90.

    Article  Google Scholar 

  • Asp, H., & Berggren, D. (1990). Phosphate and calcium uptake in beech (Fagus silvatica) in the presence of aluminium and natural fulvic acid. Physiologia Plantarum, 80, 307–314.

    Article  CAS  Google Scholar 

  • Bak, J., Tybirk, K., Gundersen, P., Jensen, J. P., Conley, D., & Hertel, O. (1999). Natur- og miljøeffekter af ammoniak. Ammoniakfordampning – Redegørelse no. 3 (in Danish). Denmark: Danmarks Miljøundersøgelser, 66 pp.

    Google Scholar 

  • Baur, S., & Feger, H. (1992). Importance of natural soil processes relative to atmospheric deposition in the mobility of aluminium in forested watersheds of the Black Forest. Environmental Pollution, 77, 99–105.

    Article  CAS  Google Scholar 

  • Bi, S. P., An, S. Q., Tang, W., Yang, M., Qian, H. F., & Wang, J. (2001). Modeling the distribution of aluminium speciation in acid soil solution equilibria with the mineral phase alunite. Environmental Geology, 41, 25–36.

    Article  CAS  Google Scholar 

  • Boudot, J. P., Becquer, T., Merlet, D., & Rouiller, J. (1994). Aluminum toxicity in declining forests: A general overview with a seasonal assessment in a silver fir forest in the Vosges mountains (France). Annales des Sciences Forestières, 51, 27–51.

    Google Scholar 

  • Brække, F. H. (1994). Diagnostiske grenseverdier for næringselementer i gran- og furunåler (in Norwegian). Aktuelt fra Skogsforsk, 15–94, 11 pp.

  • Cronan, C. S., & Grigal, D. F. (1995). Use of calcium/aluminium ratios as indicators of stress in forest ecosystems. Journal of Environmental Quality, 24, 209–226.

    Article  CAS  Google Scholar 

  • Derome, J., Lindroos, A.-J., & Lindgren, M. (2001). Soil acidity parameters and defoliation degree in six Norway spruce stands in Finland. Water, Air, & Soil Pollution. Focus, 1, 169–186.

    Article  CAS  Google Scholar 

  • de Wit, H., Mulder, J., Nygaard, P. H., Aamlid, D., Huse, M., & Kortnes, E., et al. (2001a). Aluminium: The need for a re-evaluation of its toxicity and solubility in mature forest stands. Water, Air, & Soil Pollution. Focus, 1, 103–118.

    Google Scholar 

  • de Wit, H., Mulder, J., Nygaard, P. H., & Aamlid, D. (2001b). Testing the aluminium toxicity hypothesis: A field manipulation experiment in mature spruce forest in Norway. Water, Air and Soil Pollution, 130, 995–1000.

    Article  Google Scholar 

  • Draaijers, G. P. J. (1993). The variability of atmospheric deposition to forests. Ph.D. Thesis, University of Utrecht, The Netherlands, 199 pp.

  • Emmett, B. A., Reynolds, B., Stevens, P. A., Norris, D. A., Hughes, S., Görres, J., et al. (1993). Nitrate leaching from afforested Welsh catchments – Interactions between stand age and nitrogen deposition. Ambio, 22, 386–394.

    Google Scholar 

  • Foy, C. D. (1988). Plant adaptation to acid, aluminium-toxic soils. Communications in Soil Science and Plant Analysis, 19, 959–987.

    Article  CAS  Google Scholar 

  • Gjessing, E. T., Riise, G., Petersen, R. C., & Andruchow, E. (1989). Bioavailability of aluminium in the presence of humic substances at low and moderate pH. Science of the Total Environment, 81/82, 683–690.

    Article  Google Scholar 

  • Godbold, D. L., Dictus, K., & Hüttermann, A. (1988). Influence of aluminum and nitrate on root growth and mineral nutrition of Norway spruce (Picea abies) seedlings. Canadian Journal of Forest Research, 18, 1167–1171.

    CAS  Google Scholar 

  • Godbold, D. L., & Hüttermann, A. (1988). Aluminium toxicity and forest decline. Proceedings of the National Academy of Sciences of the United States of America, 85, 3888–3892.

    Article  CAS  Google Scholar 

  • Godbold, D. L., & Kettner, C. (1991). Use of root length elongation studies to determine aluminium and lead toxicity in Picea abies seedlings. Journal of Plant Physiology, 138, 231–235.

    CAS  Google Scholar 

  • Göransson, A., & Eldhuset, T. D. (1991). Effects of aluminium on growth and nutrient uptake of Picea abies and Pinus sylvestris plants. Trees, 5, 136–142.

    Article  Google Scholar 

  • Göransson, A., & Eldhuset, T. D. (1995). Effects of aluminium ions on uptake of calcium, magnesium and nitrogen in Betula pendula seedlings growing at high and low nutrient supply rates. Water, Air and Soil Pollution, 83, 351–361.

    Article  Google Scholar 

  • Göransson, A., & Eldhuset, T. D. (2001). Is the (Ca + Mg + K)/Al ratio in the soil solution a predictive tool for estimating forest damage? Water, Air & Soil Pollution. Focus, 1, 57–74.

    Article  Google Scholar 

  • Gundersen, P. (1991). Nitrogen deposition and the forest nitrogen cycle: Role of denitrification. Forest Ecology and Management, 44, 15–28.

    Article  Google Scholar 

  • Gundersen, P., Schmidt, I. K., Hansen, K., Pedersen, L. P., & Vesterdal, L. (2003). Nitrat i vand under skove. In K. Raulund-Rasmussen, & K. Hansen (Eds.), Vand fra skovene – Problemer og muligheder (in Danish), Skovbrugsserien no. 34 (pp. 31–60). Hørsholm, Denmark: Skov & Landskab.

    Google Scholar 

  • Hansen, K. (Ed.) (2003). Næringsstofkredsløb i skove – Ionbalanceprojektet (in Danish). Forest & Landscape Research no. 33, ISBN 87-7903-156-0, Forest & Landscape, Hørsholm, 300 pp.

  • Hansen, K., Rosenqvist, L., Vesterdal, L., & Gundersen, P. (2007). Nitrate leaching from three afforestation chronosequences on former arable land in Denmark. Global Change Biology (in press).

  • Hecht-Buchholz, C., Jorns, C. A., & Keil, P. (1987). Effect of excess aluminium and manganese on Norway spruce seedlings as related to magnesium nutrition. Journal of Plant Nutrition, 10(9–16), 1103–1110.

    CAS  Google Scholar 

  • Högberg, P., & Jensén, P. (1994). Aluminium and uptake of base cations by tree roots: A critique of the model proposed by Sverdrup et al. Water, Air and Soil Pollution, 75, 121–125.

    Article  Google Scholar 

  • Holmsgaard, E., & Bang, C. (1977). Et træartsforsøg med nåletræer, bøg og eg. De første 10 ȧr (In Danish). Forstlige Forsøgsæsen i Danmark, 35, 161–196.

    Google Scholar 

  • Kinraide, T. B. (1991). Identity of the rhizotoxic aluminum species. Plant and Soil, 134, 167–178.

    CAS  Google Scholar 

  • Kristensen, H. L., Gundersen, P., Callesen, I., & Reinds, G. J. (2004). Throughfall nitrogen deposition has different impacts on soil solution nitrate concentration in European coniferous and deciduous forests. Ecosystems, 7, 180–192.

    Article  CAS  Google Scholar 

  • Løkke, H., Bak, J., Falkengren-Grerup, U., Finlay, R. D., Ilvesniemi, H., Nygaard, P. H., et al. (1996). CL of acidic deposition for forest soils: Is the current approach adequate? Ambio, 25(8), 510–516.

    Google Scholar 

  • Makkink, G. F. (1957). Testing the Penmann formula by means of lysimeters. International Journal of Water Engineering, 11, 277–288.

    Google Scholar 

  • Miller, H. G., & Miller, J. D. (1988). Response to heavy nitrogen applications in fertilizer experiments in British forests. Environmental Pollution, 54, 219–231.

    Article  CAS  Google Scholar 

  • Mulder, J., van Breemen, N., & Eijck, H. C. (1989). Depletion of soil aluminium by acid deposition and implications for acid neutralization. Nature, 337, 247–249.

    Article  CAS  Google Scholar 

  • Mulder, J., van Grinsven, J. J. M., & van Breemen, N. (1987). Impacts of acid atmospheric deposition on woodland soils in the Netherlands. 3. Aluminum Chemistry. Soil Science Society of America Journal, 51(6), 1640–1646.

    Article  CAS  Google Scholar 

  • Nilsson, J., & Grennfelt, P. (Eds.) (1988). Critical loads for sulphur and nitrogen. Report from a workshop, Skokloster, Sweden, March 1988, Nordic Council of Ministers, Copenhagen, Miljørapport 15, 418 pp.

  • Nilsson, S. I., & Bergkvist, B. (1983). Aluminium chemistry and acidification processes in a shallow podzol on the Swedish west coast. Water, Air and Soil Pollution, 20, 311–329.

    Article  CAS  Google Scholar 

  • Nordén, U. (1994). Influence of tree species on acidification and mineral pools in deciduous forest soils in south Sweden. Water, Air and Soil Pollution, 76, 363–381.

    Article  Google Scholar 

  • Nygaard, P. H., & de Wit, H. (2004). Effects of elevated soil solution Al concentrations on fine roots in a middle-aged spruce (Picea abies (L.) Karst.) stand. Plant and Soil, 265, 131–140.

    Article  CAS  Google Scholar 

  • Örlander, G., Westling, O., & Petterson, P. (1994). Markvattens innehåll av baskatjoner och aluminum och dess påverkan på tillväxt och kådflöde i kraftigt försurad granskog. Institutet för Vatten- och Luftvårdsforskning, Rapport B 1155 (in Swedish).

  • Oulehle, F., & Hruska, J. (2005). Tree species (Picea abies and Fagus sylvatica) effects on soil water acidification and aluminium chemistry at sites subjected to long-term acidification in the Ore Mts., Czech Republic. Journal of Inorganic Biochemistry, 99, 1822–1829.

    Article  CAS  Google Scholar 

  • Pannatier, E. G., Luster, J., Zimmermann, S., & Blaser, P. (2005). Acidification of soil solution in a Chestnut forest stand in Southern Switzerland: Are there signs of recovery? Environmental Science and Technology, 39(20), 7761–7767.

    Article  CAS  Google Scholar 

  • Petersen, L. B. (1993). Stofkredsløb i sitkagran, rødgran og bøgebevoksninger i Danmark (in Danish). Research Centre for Forest & Landscape, Ministry of Agriculture, Forskningsserien no. 1, 252 pp.

  • Richter, D. D., Markewitz, D., Heine, P. R., Jin, V., Raikes, J., Tian, K., et al. (2000). Legacies of agriculture and forest regrowth in the nitrogen of old-field soils. Forest Ecology and Management, 138, 233–248.

    Article  Google Scholar 

  • Robertson, S. M. C., Hornung, M., & Kennedy, V. H. (2000). Water chemistry of throughfall and soil water under four tree species at Gisburn, northwest England, before and after felling. Forest Ecology and Management, 129, 101–117.

    Article  Google Scholar 

  • Roelofs, J. G. N., Kempers, A. J., Houdik, A. L. F. M., & Jansen, J. (1985). The effect of airborne ammonium sulphate on Pinus nigra var. maritima in the Netherlands. Plant and Soil, 84, 45–56.

    Article  CAS  Google Scholar 

  • SAS Institute Inc. (2000). SAS/STAT User's Guide Version 8, Vol. 1–3. SAS Institute Inc., Cary, North Carolina, USA.

  • Schaedle, M., Thornton, F. C., Raynal, D. J., & Tepper, H. B. (1989). Response of tree seedlings to aluminium. Tree Physiology, 5, 337–356.

    CAS  Google Scholar 

  • Skeffington, R. (1999). The use of critical loads in environmental policy making: A critical appraisal. Environmental Science & Technology. News, 33, 245–252.

    Google Scholar 

  • Stefan, K., Fürst, A., Hacker, R., & Bartels, U. (1997). Forest foliar condition in Europe – Results of large-scale foliar chemistry surveys 1995. Brussels, Geneva: UNECE, 218 pp.

    Google Scholar 

  • Strand, L. (Ed.) (1997). Monitoring the environmental quality of Nordic forests. Nord, ISBN 92-893-0076-0. Agriculture and Forestry, Environment, 14, 1–77.

    Google Scholar 

  • Sverdrup, H., & de Vries, W. (1994). Calculating critical loads for acidity with the simple mass balance method. Water, Air and Soil Pollution, 72, 143–162.

    Article  CAS  Google Scholar 

  • Sverdrup, H., & Warfwinge, P. (1993). The effect of soil acidification on the growth of trees, grass and herbs as expressed by the (Ca + Mg + K)/Al ratio. Lund University, Department of Chemical Engineering II, Report 2 :1993, ISSN 1104-2877, KF-Sigma, Lund, 177 pp.

  • Ulrich, B. (1981). Eine ökosystemare hypothese über die ursachen des tannensterbens (Abies alba Mill.). Forstwissenschaftliches Centralblatt, 100, 228–236.

    Google Scholar 

  • Ulrich, B. (1983). An ecosystem oriented hypothesis on the effect of air pollution on forest ecosystems. In G. Persson, & A. Jernelöv (Eds.), Ecological effects of acid deposition (pp. 221–231). Stockholm: Swedish Environmental Protection Board, SNV-PM 1636.

  • Ulrich, B., & Matzner, E. (1983). Abiotische Folkewirkungen der weitraumigen Ausbreitung von Luftverumreinigung. Umweltforschungsplan der Bundesminister der Innern. Forschungsbericht 10402615, BRD, 221 pp.

  • UN-ECE (1998). Manual on methods and criteria for harmonised sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Hamburg: Programme Coordinating Centre, Federal Research Centre for Forestry and Forest Products, 4th edn.

  • Van den Burg, J. (1985). Foliar analysis for determination of tree nutrient status – A compilation of literature data. De Dorschkamp, Wageningen, The Netherlands: Institute for Forestry and Urban Ecology, 615 pp.

  • Van den Burg, J. (1990). Foliar analysis for determination of tree nutrient status – A compilation of literature data, 2. Literature 1985–1989. De Dorschkamp, Wageningen, The Netherlands: Institute for Forestry and Urban Ecology, Report no. 591, 220 pp.

  • Wauer, G., Heckemann, H.-J., & Koschel, R. (2004). Analysis of toxic aluminium species in natural waters. Mikrochimica Acta, 146(2), 149–154.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Forest and Nature Agency and the European Commission funded the study. The authors would like to thank the laboratory staff at the Department of Applied Ecology, Forest & Landscape Denmark, for excellent field and laboratory work, and three unknown reviewers for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, K., Vesterdal, L., Bastrup-Birk, A. et al. Are Indicators for Critical Load Exceedance Related to Forest Condition?. Water Air Soil Pollut 183, 293–308 (2007). https://doi.org/10.1007/s11270-007-9377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9377-1

Keywords

Navigation