Skip to main content
Log in

Heavy Metal Behaviour in an Experimental Free Water Surface Wetland in the Venice Lagoon Watershed

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Wetlands are effective in the treatment of polluted surface water. A semi-natural wetland pilot plant was established to verify the pollutant abatement effectiveness of the Venice Lagoon inlet water. The unique conditions of this brackish environmental site are: (1) a high concentration of carbonate and low concentrations of sulphides, and (2) the abundance of organic matter in sediments. The goal of this study was to examine how these characteristics influence the metal mobility in the wetland and to compare our results to published literature. The data collected were limited with respect to statistical analysis because the metal concentrations were often below the detection limits. Therefore, we chose to perform non-parametric analyses. To analyse the relationships among heavy metal concentrations and the physical and chemical wetland variables, and to investigate the processes of metal removal, we performed a multivariate statistical analysis and a Spearman correlation analysis. The results indicated that the reduced and basic conditions of the sediments seen in the Venice Lagoon environment facilitated the removal of metals due to the formation of insoluble compounds with sulphides and carbonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ARPAV, (2004). Carta dei suoli del bacino scolante in laguna di Venezia. Osservatorio Regionale Suolo, Castelfranco Veneto (TV). Italy

  • Bates, A. L., Orem, W. H., Harvey, J. W., & Spiker, E. C. (2002). Tracing sources of sulfur in the Florida Everglades. Journal of Environmental Quality, 31, 287–299.

    CAS  Google Scholar 

  • Bertolin, A., Frizzo, P., & Ramazzo, G. (1995). Sulphide speciation in surface sediments of the Lagoon of Venice: A geochemical and mineralogical study. Marine Geology, 123, 73–86.

    Article  CAS  Google Scholar 

  • Buykx, S. E. J., van den Hoop, M. A. G. T., & Loch, J. P. G. (2002). Dissolution kinetics of heavy metals in Dutch carbonate- and sulfide-rich freshwater sediments. Journal of Environmental Quality, 31, 573–580.

    CAS  Google Scholar 

  • DeVolder, P. S., Brown, S. L., Hesterberg, D., & Pandya, K. (2003). Metal bioavailability and speciation in a wetland tailings repository amended with biosolids compost, wood ash and sulfate. Journal of Environmental Quality, 32, 851–864.

    CAS  Google Scholar 

  • Dixit, S., & Hering, J. G. (2003). Comparison of arsenic (V) and (III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science & Technology, 37, 4182–4189.

    Article  CAS  Google Scholar 

  • Elder, J. F. (1988). Factors affecting wetland retention of nutrients, metals, and organics. In: J.A. Kusler and G. Brooks (eds.), Proceedings for the national wetland symposium: wetland hydrology (p. 178–184). 16–18 Sept. 1987. Chicago, IL.

  • Fendorf, S., La Force, M. J., & Li, G. (2004). Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium, and lead. Journal of Environmental Quality, 33, 2049–2055.

    CAS  Google Scholar 

  • Fox, P. M., & Doner, H. E. (2003). Accumulation, release and solubility of arsenic, molybdenum and vanadium in wetland sediments. Journal of Environmental Quality, 32, 2428–2435.

    CAS  Google Scholar 

  • Green, C. H., Heil, D. M., Cardon, G. E., Butters, G. L., & Kelly, E. F. (2003). Solubilization of manganese and trace metals in soils affected by acid mine runoff. Journal of Environmental Quality, 32, 1323–1334.

    CAS  Google Scholar 

  • Guo, T., Delaune, R. D., & Patrick, W. H. Jr. (1997). The effect of sediment redox chemistry on solubility/chemically active forms of selected metals in bottom sediment receiving produced water discharge. Spill Science and Technology Bulletin, 4, 165–175.

    Article  CAS  Google Scholar 

  • Howarth, R. W., Stewart J. W. B., & Ivanov, M. V. (1992). Sulphur cycling on the continents. Wetlands, terrestrial ecosystems and associated water bodies. Paris, France: Scientific Committee on Problems of Environment (SCOPE).

    Google Scholar 

  • ITRC (Interstate Technology & Regulatory Council). (2003). Technical and Regulatory Guidance Document for Constructed Treatment Wetlands. WTLND-1. Washington, D.C.: Interstate Technology & Regulatory Council, Mitigation Wetlands Team. Retrieved from: http://www.itrcweb.org

  • Kadlec, R. H., & Knight, R. L. (1996). Treatment Wetlands. Boca Raton, FL, USA: Lewis.

    Google Scholar 

  • Karpiscak, M. M., Whiteaker L. R., Artiola J.F., & Foster K. E. (2001). Nutrient and heavy metal uptake and storage in constructed wetland systems in Arizona. Water Science and Technology, 44, 455–462.

    CAS  Google Scholar 

  • Knox, A. S., Gamerdinger, A. P., Adriano, D. C., Kolka, R. K., & Kaplan, D.I. (1999). Sources and practices contributing to soil contamination. American Society of Agronomy. Bioremediation of contaminated soils, Agronomy Monograph no. 37.

  • Lasat, M. M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.

    CAS  Google Scholar 

  • Legendre, P., & Legendre, L. (1998). Numerical Ecology. Amsterdam, The Netherlands: Elsevier Scientific Publishing Company.

    Google Scholar 

  • Linge, K. L., & Oldham, C. E. (2002). Arsenic remobilization in a shallow lake: The role of sediment resuspension. Journal of Environmental Quality, 31, 822–828.

    CAS  Google Scholar 

  • Machate, T., Heuermann, E., Schramm, K., & Kettrup, A. (1999). Purification of fuel and nitrate contaminated ground water using a free water surface constructed wetland. Journal of Environmental Quality, 28, 1665–1673.

    CAS  Google Scholar 

  • Masscheleyn, P. H., Delaune, R. D., & Patrick, W. H. (1991) Arsenic and selenium chemistry as affected by sediment redox potential and pH. Journal of Environmental Quality, 20, 522–527.

    CAS  Google Scholar 

  • MIPAF (1999). Decreto Ministeriale 13 settembre 1999. Approvazione dei “Metodi ufficiali di analisi chimica del suolo.” Gazzetta Ufficiale n. 248 del 21–10–1999.

    Google Scholar 

  • O’Day, P. A., Vlassopoulos, D., Root, R., & Rivera, N. (2004). The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. PNAS, 101, 13703–13708.

    Article  CAS  Google Scholar 

  • Quian, J., Zayed, A., Zhu, Y., Yu, M., & Terry, N. (1999). Phytoaccumulation of trace elements by wetland plants: III. Uptake and accumulation of ten trace elements by twelve plant species. Journal of Environmental Quality, 28, 1448–1455.

    Google Scholar 

  • Regione Veneto (2000). Piano per la prevenzione dell’inquinamento e il risanamento delle acque del bacino idrografico immediatamente sversante nella laguna di Venezia. Venice, Italy.

  • Ryu, H. W., Moon, H. S., Lee, E. Y., Cho, K. S., & Choi H. (2003). Leaching characteristics of heavy metals from sewage sludge by Acidithiobacillus thiooxidans MET. Journal of Environmental Quality, 32, 751–759.

    CAS  Google Scholar 

  • Scholz, M. (2003). Performance predictions of mature experimental constructed wetlands which treat urban water receiving high loads of lead and copper. Water Research, 37, 1270–1277.

    Article  CAS  Google Scholar 

  • Shen, Z. G., Li, X. D., Wang, C. C., & Chen, H. M. (2002). Lead phytoextraction from contaminated soil with high-biomass plant species. Journal of Environmental Quality, 31, 1893–1900.

    CAS  Google Scholar 

  • Sheoran, A. S., & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Minerals Engineering 19, 105–116.

    Article  CAS  Google Scholar 

  • Shutes, R. B. E., Revitt, D. M., Scholes, L. N. L., Forshaw, M., & Winter, B. (2001). An experimental constructed wetland system for the treatment of highway runoff in the UK. Water Science and Technology, 44, 571–578.

    CAS  Google Scholar 

  • StatSoft, Inc. (2001). STATISTICA for Windows [Computer program manual]. Tulsa, OK.

  • Stewart, M. A., Jardine, P. M., Barnett, M. O., Mehlhorn, T. L., Hyder, L. K., & McKay, L. D. (2003). Influence of soil geochemical and physical properties on the sorption and bioaccessibility of chromium(III). Journal of Environmental Quality, 32, 129–137.

    CAS  Google Scholar 

  • Sukreeyapongse, O., Holm, P. E., Strobel, B. W., Panichsakpatana, S., Magid, J., & Hansen, H. C. B. H. (2002). pH-dependent release of cadmium, copper and lead from natural and sludge-amended soils. Journal of Environmental Quality, 31, 1901–1909.

    CAS  Google Scholar 

  • Van Den Berg, G. A., Loch, J. P. G., Van Der Heijdt, L. M., & Zwolsman, J. J. G. (1998). Vertical distribution of acid-volatile sulfide and simultaneously extracted metals in a recent sedimentation area of the river Meuse in The Netherlands. Environmental Science & Technology, 17, 758–763.

    Google Scholar 

  • Voegelin, A., Barmettler, K., & Kretzschmar, R. (2003). Heavy metal release from contaminated soils: Comparison of column leaching and batch extraction results. Journal of Environmental Quality, 32, 865–875.

    CAS  Google Scholar 

  • Wen, X., & Allen, H. E. (1999). Mobilization of heavy metals from Le An River sediment. The Science of the Total Environment, 227, 101–108.

    Article  CAS  Google Scholar 

  • Wijnja, H., & Schulthess, C. P. (2000). Interaction of carbonate and organic anions with sulfate and selenate adsorption on an aluminum oxide. Environmental Science & Technology, 64, 898–908.

    CAS  Google Scholar 

  • Willow, M. A., & Cohen R. R. H. (2003). pH, dissolved oxygen and adsorption effects on metal removal in anaerobic bioreactors. Journal of Environmental Quality, 32, 1212–1221.

    Article  CAS  Google Scholar 

  • Wood, T. S., & Shelleym, M. L. (1999). A dynamic model of bioavailability of metals in constructed wetland sediments. Ecological Engineering, 12, 231–252.

    Article  Google Scholar 

  • Yang, J.-K., Barnett, M. O., Jardine, P. M., Basta, N. T., & Casteel, S. W. (2002). Adsorption, sequestration and bioaccessibility of As(V) in soils. Environmental Science & Technology, 36, 4562–4569.

    Article  CAS  Google Scholar 

  • Ye, Z. H., Whiting, S. N., Quian, J. H., Lytle, C. M., Lin, Z. Q., & Terry, N. (2001). Trace elements removal from coal ash leachate by a 10-year-old constructed wetland. Journal of Environmental Quality, 30, 1710–1719.

    CAS  Google Scholar 

  • Zhang, M., He, Z., Calvert, D. V., Stoffella, P. J., & Jiang, X. (2003). Surface runoff losses of copper and zinc in sandy soils. Journal of Environmental Quality, 32, 909–915.

    CAS  Google Scholar 

Download references

Acknowledgements

The project was funded by the Venice Water Authority (Ministero Infrastrutture e Trasporti) and coordinated by its concessionaire Consorzio Venezia Nuova (CVN). We gratefully acknowledge the assistance of Alberto Giulio Bernstein, Head of the Environmental Engineering Department of CVN. We also thank Protecno srl (Italy) for the provision of the hydraulic data and raw analysis, and Labcontrol snc (Italy) for assisting with the chemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Mattiuzzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattiuzzo, E., Favero, L., Zennaro, F. et al. Heavy Metal Behaviour in an Experimental Free Water Surface Wetland in the Venice Lagoon Watershed. Water Air Soil Pollut 183, 143–151 (2007). https://doi.org/10.1007/s11270-007-9363-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9363-7

Keywords

Navigation